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THE STRONG MAXIMUM PRINCIPLE REVISITED

PATRIZIA PUCCI AND JAMES SERRIN

Abstract. In this paper we first present the classical maximum principle due to E. Hopf,
together with an extended commentary and discussion of Hopf’s paper. We emphasize the
comparison technique invented by Hopf to prove this principle, which has since become a
main mathematical tool for the study of second order elliptic partial differential equations
and has generated an enormous number of important applications. While Hopf’s principle
is generally understood to apply to linear equations, it is in fact also crucial in nonlinear
theories, such as those under consideration here.

In particular, we shall treat and discuss recent generalizations of the strong maximum
principle, and also the compact support principle, for the case of singular quasilinear ellip-
tic differential inequalities, under generally weak assumptions on the quasilinear operators
and the nonlinearities involved. Our principal interest is in necessary and sufficient con-
ditions for the validity of both principles; in exposing and simplifying earlier proofs of
corresponding results; and in extending the conclusions to wider classes of singular oper-
ators than previously considered.

The results have unexpected ramifications for other problems, as will develop from the
exposition, e.g.

(i) two point boundary value problems for singular quasilinear ordinary differential
equations (Sections 3, 4);

(ii) the exterior Dirichlet boundary value problem (Section 5);
(iii) the existence of dead cores and compact support solutions, i.e. dead cores at infinity

(Section 7);
(iv) Euler–Lagrange inequalities on a Riemannian manifold (Section 9);
(v) comparison and uniqueness theorems for solutions of singular quasilinear differential

inequalities (Section 10).
The case of p-regular elliptic inequalities is briefly considered in Section 11.
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1. Introduction

The strong maximum principle of Eberhard Hopf is a classical and bedrock result of the
theory of second order elliptic partial differential equations. It goes back to the maximum
principle for harmonic functions, already known to Gauss in 1839 on the basis of the mean
value theorem. On the other hand, it carries forward to maximum principles for singular
quasilinear elliptic differential inequalities, a theory initiated particularly by Vázquez and
Diaz in the 1980’s, but with earlier intimations in the work of Benilan, Brezis and Crandall.

Our purpose here is to provide a clear explanation of this type of result, from its be-
ginnings, to show its relation with and differences from the classical theory of Hopf, and
to develop the ramifications of these ideas in rather unexpected byways. In particular,
there are intimate connections with a number of fundamental questions of elliptic partial
differential equations, more specifically in the noteworthy directions:

(i) two point boundary value problems for singular quasilinear ordinary differential equa-
tions (Sections 3, 4);

(ii) the exterior Dirichlet boundary value problem (Section 5);
(iii) the existence of dead cores and compact support solutions, i.e. dead cores at infinity

(Section 7);
(iv) Euler–Lagrange inequalities on a Riemannian manifold (Section 9);
(v) comparison and uniqueness theorems for solutions of singular quasilinear differential

inequalities (Section 10).
These areas and their relevant connections will be developed throughout the course of

the article, see especially Sections 3, 4, 5, 7, 9 and 10. We shall particularly emphasize
and maintain the nonlinear nature of the operators involved, in contrast to the naive view
sometimes expressed that Hopf’s original result applies principally to linear operators.

After an initial discussion of the maximum principle of Eberhard Hopf, Section 2, we shall
turn our attention in the following sections especially to the strong maximum principle
and the compact support principle for quasilinear differential inequalities. To introduce
these questions in the most natural way, it is convenient first to describe a canonical type
of inequality to which the discussion applies, and to clarify the structure of these model
inequalities by means of special examples.

Thus we consider in the first instance the strong maximum principle and the compact
support principle for quasilinear elliptic differential inequalities, under generally weak as-
sumptions on the quasilinear operators in question, in the canonical divergence structure

div{A(|Du|)Du} − f(u) ≤ 0, u ≥ 0,(1.1)

and

div{A(|Du|)Du} − f(u) ≥ 0, u ≥ 0,(1.2)

in a domain (connected open set) Ω in Rn, n ≥ 2. Here Du denotes the vector gradient of
the given function u = u(x), x ∈ Rn. We assume throughout the paper, unless otherwise
stated explicitly, the following conditions on the operator A = A(ρ) and the nonlinearity
f = f(u),

(A1) A ∈ C(0,∞),
(A2) ρ 7→ ρA(ρ) is strictly increasing in (0,∞) and ρA(ρ) → 0 as ρ → 0;
(F1) f ∈ C[0,∞),
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(F2) f(0) = 0 and f is non–decreasing on some interval (0, δ), δ > 0.

Condition (A2) is a minimal requirement for ellipticity of (1.1)–(1.2). Furthermore, it allows
singular and degenerate behavior of the operator A at ρ = 0, that is at critical points of
u. We emphasize that no assumptions of differentiability are made on either A or f when
dealing with the canonical models (1.1) and (1.2).

The operator div{A(|Du|)Du} will be called the A–Laplace operator, so as to place it in
the context of well–known elliptic theory.

By a classical solution (or a classical distribution solution) of (1.1) or (1.2) in Ω we mean
a non–negative function u ∈ C1(Ω) which satisfies (1.1) or (1.2) in the distribution sense.

With the notation Φ(ρ) = ρA(ρ) when ρ > 0, and Φ(0) = 0, we introduce the function

H(ρ) = ρΦ(ρ)−
∫ ρ

0
Φ(s)ds, ρ ≥ 0.(1.3)

This function is easily seen to be strictly increasing, as follows from the inequality

ρ1Φ(ρ1)− ρ0Φ(ρ0) > (ρ1 − ρ0)Φ(ρ1) >
∫ ρ1

ρ0

Φ(s)ds

when ρ1 > ρ0 ≥ 0. Alternatively, monotonicity follows from the representation

H(ρ) =
∫ Φ(ρ)

0
Φ−1(ω)dω, ρ ≥ 0,(1.4)

this being a consequence of the Stieltjes formula H(ρ) =
∫ ρ
0 s dΦ(s).

For the Laplace operator, that is when (1.1) takes the classical form

∆u− f(u) ≤ 0, u ≥ 0,

we have A(ρ) ≡ 1 and H(ρ) = 1
2ρ2. Similarly, for the degenerate p–Laplace operator, here

denoted by ∆p, p > 1, we have A(ρ) = ρp−2 and H(ρ) = (p − 1)ρp/p, while for the mean
curvature operator, one has A(ρ) = 1/

√

1 + ρ2 and H(ρ) = 1 − 1/
√

1 + ρ2. In the last
example, note the anomalous behavior Φ(∞) = H(∞) = 1, a possibility which occasionally
requires extra care in the statement and treatment of results.

It is also worth observing that (1.1), when equality holds, is precisely the Euler–Lagrange
equation for the variational integral

I[u] =
∫

Ω
{G(|Du|) + F (u)}dx, F (u) =

∫ u

0
f(s)ds,(1.5)

where G and A are related by A(ρ) = G′(ρ)/ρ, ρ > 0. In this case H(ρ) = ρG′(ρ)−G(ρ), the
pre–Legendre transform of G. Further comments and other examples of operators satisfying
(A1), (A2) are given in [30].

By the strong maximum principle for (1.1) we mean the statement that if u is a classical
solution of (1.1) with u(x0) = 0 for some x0 ∈ Ω, then u ≡ 0 in Ω.

We can now state the main results of [27], which are proved in Section 6 using a very
much simplified method based on the results of Sections 3, 4 and 5.
Theorem 1.1. (Strong maximum principle). In order for the strong maximum princi-
ple to hold for (1.1) it is necessary and sufficient either that f(s) ≡ 0 for s ∈ [0, µ), µ > 0,
or that f(s) > 0 for s ∈ (0, δ) and

∫ δ

0

ds
H−1(F (s))

= ∞.(1.6)

As is well known, the strong maximum principle is extremely useful when studying the
qualitative behavior of solutions of differential equations and inequalities. The choice of the
base level zero for the statement of the principle is of course a matter only of convenience,
as is whether we deal with minimum or maximum values at the base point x0.



4 P. PUCCI AND J. SERRIN

The background and literature for Theorem 1.1 is fairly complicated and deserves a
number of comments:

The necessity of (1.6) for the case of the Laplace operator is due to Benilan, Brezis and
Crandall [4], while for the p–Laplacian it is due to Vázquez [41]. In these cases we observe
that (1.6) reduces respectively to

∫ δ

0

ds
√

F (s)
= ∞ and

∫ δ

0

ds
[F (s)]1/p = ∞.

For general operators satisfying (A1), (A2), necessity is due to Diaz ([11], Theorem 1.4),
see also ([30], Corollary 1).

Sufficiency for the case of the Laplace operator and also for the p–Laplacian is again
due to Vázquez [41], see also [11] and [38]. For general operators satisfying (A1), (A2),
sufficiency was proved in Theorem 1 of [30] under an additional technical assumption, and
in Theorem 1 of [27] without the technical assumption. For the vectorial case see [16].

The case when f ≡ 0 was studied by Cellina [5] for non–negative minimizers of the
integral

∫

Ω G(|Du|)dx. An alternative abstract approach to the strong maximum principle
appears in [6].

The regular case. If A(ρ) is continuous on [0,∞), limρ→0 A(ρ) = α > 0, and f(u) ≤
Const. u, (u ≥ 0), then clearly Φ(ρ) ≈ αρ and H(ρ) ≈ αρ2/2 for small ρ, while also
F (u) ≤ Const. u2; thus obviously the strong maximum principle is valid. In fact, far
stronger results are known in this direction [36]:

Let u and v be classical distribution solutions of the differential inequalities

divÂ(x, u,Du)− B̂(x, u, Du) ≤ 0

divÂ(x, v, Dv)− B̂(x, v, Dv) ≥ 0,

in Ω, where the vector function Â(x, z, ξ) and the scalar B̂(x, z, ξ) are continuously differ-
entiable in the variables z, ξ, and the matrix [∂Â/∂ξ] is positive definite for all values of
its variables.

If u ≥ v in Ω, then either u ≡ v or u > v in Ω.

We shall not pursue this direction further, since our interest is essentially in functions Â
and B̂ which are singular or degenerate, respectively when Du = 0 and when u = 0.

A rigorous treatment of the full sufficiency result of Theorem 1.1, avoiding use of the
technical assumption (2.5) of [30], is not entirely obvious, involving as it does the solu-
tion of differential inequalities whose structure includes driving and amplifying terms which
reinforce each other. The proof here uses only standard calculus, and the elementary Leray–
Schauder theorem (see [18], Theorem 11.6), but requires neither monotone operator theory
(as [41], [11]–[14]), nor Orlicz–Sobolev space theory (as [23]), nor viscosity solution the-
ory (as [21]), nor probabilistic methods. The proofs have further applications as well, for
example to dead core theory, see Section 7 and uniqueness for the Dirichlet problem, see
Section 10.

In the next result we consider the situation when the integral in (1.6) is convergent.
Here the appropriate hypotheses are that u satisfies the converse inequality (1.2) and also
“vanishes” at ∞, rather than at some finite point x0 ∈ Ω.

More precisely, by the compact support principle for (1.2) we mean the statement that
if u is a classical solution of (1.2) in an exterior domain Ω, with u(x) → 0 as |x| → ∞,
then u has compact support in Ω.

Theorem 1.2. (Compact support principle). Let f(u) > 0 for 0 < u < δ. Then in
order for the compact support principle to hold for (1.2) in an exterior domain Ω, it is
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necessary and sufficient that
∫ δ

0

ds
H−1(F (s))

< ∞.(1.7)

As in the case of the strong maximum principle it is worth commenting on the background
and literature for Theorem 1.2.

Necessity was first shown in Corollary 2 of [30] under the additional technical assumption
(2.5) of [30], and in [27], with a proof which is in totality not at all easy. The proof given
here is simpler and at the same time provides an existence theorem for radial solutions of
exterior Dirichlet problems, see Theorem 5.1.

The sufficiency of (1.7) is Theorem 2 of [30], but see also [31] and the remarks following
the statement of Theorem 2 in [30]. For radially symmetric solutions of (1.2) sufficiency was
proved in [17] under the weaker assumption that F (s) > 0 for s ∈ (0, δ), see Proposition 1.3.1
of [17].

If Theorem 1.2 were an exact analogue of Theorem 1.1, the conclusion of the compact
support principle would be that u ≡ 0 in Ω, but this would be incorrect since (1.2) admits
non–trivial compact support solutions under assumption (1.7), see [17] and Theorem 7.5
below.

The existence of compact support solutions for quasilinear equations was studied exten-
sively in the 80’s, as well as other properties of the set where the solution u vanishes, for
example the case of dead cores. In chemical models, when u represents the density of a
reactant, the vanishing of a solution then delineates a region where no reactant is present
(see [1], [12]). A short discussion of dead cores for (1.1), with equality sign, is given in
Section 7, see Theorems 7.2 and 7.3.

The results described above can be extended to a wider class of differential inequalities by
replacing div {A(|Du|)Du} by the more general operator Di{aij(x, u)A(|Du|)Dju} and f(u)
by B(x, u, Du), where [aij(x, u)] is a continuously differentiable positive–definite symmetric
matrix on Ω×R+

0 and where B is continuous and satisfies a (typical) condition of the form

−Const. Φ(|ξ|) + g(u) ≤ B(x, u, ξ) ≤ Const. Φ(|ξ|) + f(u)(1.8)

for x ∈ Ω, u ≥ 0 and all ξ ∈ Rn with |ξ| sufficiently small, and with f and g satisfying (F1)
and (F2); see Theorem 8.1 and 8.5, and their corollaries, these being the second main goal
of the paper; see also Section 9.

An important prototype is the equation

∆pu− |Du|q − f(u) = 0, p > 1, q > 0.(1.9)

Since Φ(ρ) = ρp−1 for this case, condition (1.8) applies with f = g and requires q ≥ p− 1;
that is, the strong maximum principle holds for (1.9) when q ≥ p − 1 and either f ≡ 0 in
[0, µ], µ > 0, or f obeys (1.6) – see Corollary 8.3. On the other hand, when q ∈ (0, p − 1)
the strong maximum principle can fail, even when f ≡ 0, e.g. the C1 function u(x) = C|x|k
satisfies

∆pu− |Du|q = 0,(1.10)

where

k =
p− q

s
,

1
C

= k
[

(p− 1)n− (n− 1)q
s

]1/s

, s = p− 1− q > 0

(for p = 2, this example is due to Barles, Diaz and Diaz [3]). It is of further interest in
connection with this example that the compact support principle can fail even if (1.8) is
satisfied, namely when q > p − 1! Indeed, the function u(x) = L|x|−l satisfies (1.10) in
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ΩR = Rn \BR, with l = (p− q)/t > 0, provided that

q >
n(p− 1)
n− 1

, L =
1
l

[

(n− 1)q − (p− 1)n
t

]1/t

, t = q − p + 1.

For the special case when A ≡ 1 and f(u) = uq, q > 0, the strong maximum principle
holds for non–negative C1 distribution solutions of ∆u−uq ≤ 0 if and only if q ≥ 1, while the
compact support principle holds for non–negative C1 distribution solutions of ∆u− uq ≥ 0
if and only if 0 < q < 1. Actually by the main results of [17], or by Section 7 below, there
exist C2 non–negative radially symmetric compact support solutions of ∆u− uq = 0 when
0 < q < 1.

Note that when q = 0 our analysis cannot be applied. Let c ∈ R. The strong maximum
principle holds for non–negative C1 distribution solutions of ∆u − c ≤ 0 only if c ≤ 0.
Indeed the equation ∆u− 2n = 0 in any domain Ω of Rn containing the origin admits the
non–trivial solution u(x) = |x|2, but u(0) = 0. We also note that the equation ∆u− c = 0,
with c 6= 0, admits no compact support solutions no matter what of the sign of c, as follows
from the Hopf boundary point lemma.

The same remarks apply to the p–Laplacian analogue ∆pu − uq = 0, p > 1 and q > 0,
for which the compact support principle holds for non–negative C1 distribution solutions if
and only if 0 < q < p−1, while the strong maximum principle holds if and only if q ≥ p−1.

As we shall note in Section 2, dedicated to the original work of E. Hopf (see also [37]), the
Maximum Principle implies the Comparison Principle, Theorem 2.4. On the other hand,
for singular equations, even if they are smooth, the situation is more delicate. Consider for
example

∆4u + |Du|2 = 0, n = 2,(1.11)

which, when expanded to the form F(Du,D2u) = 0 is smooth (even analytic), elliptic when
Du 6= 0, and degenerate,1 that is, ∂F/∂(D2u) = 0 when Du = 0. The Strong Maximum
Principle continues to hold (see Theorem 8.1), while on the other hand (1.11) admits two
unequal solutions u ≡ 0 and u(x) = 1

8(R2 − |x|2) in BR, both with the same boundary
values.

The paper is structured as follows. In Section 2 we present the classical Hopf Maximum
Principle together with some comments of independent interest. Section 3 is devoted to
some preliminary lemmas, and Section 4 to existence and uniqueness for related two point
boundary value problems for quasilinear ordinary differential equations.

Section 5 deals with the existence and uniqueness of classical radial solutions of the
exterior Dirichlet problem for (1.1), or (1.2), with equality sign, namely for the case of
equations. The results are important in the proof of the compact support principle, but are
also of independent interest.

In Section 6 we prove the main Theorems 1.1 and 1.2 for the canonical models (1.1) and
(1.2).

In Section 7 the existence of dead cores for (1.1), with equality sign, is proved, and also
the existence of compact support solutions of (1.1) in exterior domains.

In Sections 8.1 and 8.2 we consider the case of fully quasilinear inequalities

Di{aij(x, u)A(|Du|)Dju} −B(x, u, Du) ≤ 0 (≥ 0), u ≥ 0(1.12)

1In particular, in this case

F(Du, D2u) = |Du|2∆u + 2
2X

i,j=1

DiuDjuD2
iju + |Du|2.
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(where the obvious summation convention is used). Section 9 extends these considerations
to the quasilinear inequality

Di{aij(x, u)A(|Du|g)Dju} −B(x, u, Du) ≤ 0,(1.13)

where |Du|g =
√

gij(x, u)DiuDju is a gradient norm of Riemannian type, a case of im-
portance when one treats variational problems on a manifold; in this regard we emphasize
particularly Theorem 9.3.

Section 10 contains a series of general comparison principles for singular elliptic inequal-
ities of divergence type. These results, which extend well–known theorems of Gilbarg and
Trudinger, are important not only in proving our main conclusions for the strong maximum
principle, but naturally are useful well beyond this application. In particular, they imply
various uniqueness results for the Dirichlet problem, see e.g. Theorems 10.8 and 10.10,
which appear to be new in the generality given.

Section 11 contains a brief discussion of the strong maximum principle for p–regular
inequalities, alternative to the previous considerations.

Finally, in Section 12 we treat several special cases where the main proof of Proposition 4.1
reduces to a simpler form. As a byproduct of this discussion we obtain a rational comparison
function for some special inequalities, alternative to the classical exponential function of E.
Hopf.

2. The Hopf Maximum Principle

Before giving the main results already stated, we present the classical principle due to
E. Hopf in [20], together with an extended commentary and discussion of Hopf’s original
paper by J. Serrin [37].

The maximum principle for harmonic and subharmonic functions was known to Gauss
on the basis of the mean value theorem (1839); an extension to elliptic inequalities however
remained open until the twentieth century. Bernstein (1904), Picard (1905), Lichtenstein
(1912, 1924) then obtained various results by difficult means, as well as use of regularity
conditions for the coefficients of the highest order terms. It was Hopf’s genius to see that
a “ga̋nzlich elementare Begrűnden” could be given. The comparison technique he invented
for this purpose is essentially so transparent that it has generated an enormous number of
important applications in many further directions.

Here is Hopf’s theorem in its main form:

Let u = u(x), x = (x1, . . . , xn), be a C2 function which satisfies the differential inequality

Lu ≡
∑

i,j

aij
∂2u

∂xi∂xj
+

∑

i

bi
∂u
∂xi

≥ 0

in a domain Ω, where the (symmetric) matrix aij = aij(x) is locally uniformly positive
definite in Ω and the coefficients aij, bi = bi(x) are locally bounded.

If u takes a maximum value M in Ω, then u ≡ M in Ω.

Hopf’s proof (Section I of [20]), now a classic of the subject, is reproduced in the mono-
graphs [26] and [18], and in many other texts as well, particularly the second volume of [7].
The hypothesis that u is of class C2 is essential for the theorem, though not always strictly
noted in presentations of the result. For maximum principles when u is not of class C2,
and even possibly only measurable, see e.g. Littman [22]; for the case of C1 distribution
solutions, see the later results of the present paper, as discussed in the introduction.

Hopf next observes (Section II of [20]) that one can allow the coefficients to depend on
the solution u itself, provided that when they are evaluated along a solution the resulting
functions aij(x), bi(x) satisfy the conditions of the main theorem. This allows him to deal
explicitly with nonlinear as well as linear equations.

In the same section he then notices two important corollaries (Sa̋tze 2, 3) dealing with
the differential inequality Lu + cu ≥ 0. First, for the case c = c(x) ≤ 0 and a positive
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maximum, and second, when there is an extremum M = 0 with c being bounded but not
necessarily non–positive. The latter possibility is not mentioned in [18]. Moreover, Courant
and Hilbert in their formulation of Satz 2 in [7] do not include the crucial restriction to a
positive maximum.

Because Hopf’s formulation of these results is somewhat obscure, the main conclusions
are worth restating here, which we do in terms of the operator L.

Theorem 2.1. Let u be a C2 function satisfying the differential inequality

Lu + cu ≥ 0 (≤ 0)(2.1)

in a domain Ω, where the coefficients of L satisfy the previous conditions, and c = c(x) is
a non-positive function on Ω. If u takes a positive maximum (negative minimum) value M
in Ω, then u ≡ M .

Theorem 2.2. Let the hypotheses of Theorem 2.1 hold, except that one now assumes only
that the function c is locally bounded. If u takes on a vanishing maximum (minimum) value
M = 0 in Ω, then u ≡ 0.

The real depth of Hopf’s nonlinear analysis shows up only in Section III of [20], though
the presentation is seriously obscured by the restriction to exact equations, as well as to
the case where one of the solutions in question is assumed to vanish identically (“engere
Voraussetzungen” according to Hopf). Accordingly we shall again restate the results, in
slightly greater generality and in more usual notation.

Theorem 2.3. (Touching Lemma). Let u, v be C2(Ω) solutions of the nonlinear differ-
ential inequalities

F(x, u, Du,D2u) ≥ 0, F(x, v, Dv, D2v) ≤ 0,

where F is of class C1 in the variables u, Du, D2u (notation obvious). Suppose also that
the matrix

Qij ≡
∂F

∂(D2
iju)

(x, u, Du, θD2u + (1− θ)D2v)

is positive definite in Ω for all θ ∈ [0, 1].
If u ≤ v in Ω and u = v at some point x0 in Ω, then u ≡ v in Ω.
The terms u, Du in Q can be replaced by v,Dv.

Proof. Essentially following Hopf’s proof of Satz 3′ of [20], we write

0 ≥ F(x, v, Dv, D2v)−F(x, u, Du,D2u) = F(x, u, Du,D2v)−F(x, u, Du,D2u)

+ F(x, u,Dv, D2v)−F(x, u, Du,D2v) + F(x, v, Dv, D2v)−F(x, u,Dv, D2v)

=
∑

aijD2
ij(v − u) +

∑

biDi(v − u) + c(v − u) = L(v − u) + c(v − u),

where, for some values θ, θ1, θ2 ∈ [0, 1] we have

aij =
∂F

∂(D2
iju)

(x, u, Du, θD2v + (1− θ)D2u) = Qij

bi =
∂F

∂Diu
(x, v, θ1Dv + (1− θ1)Du,D2u)

c =
∂F
∂u

(x, θ2v + (1− θ2)u,Dv,D2v).

Clearly aij , bi, c are locally bounded, and equally by continuity the coefficient matrix aij is
locally uniformly positive definite on Ω. Since by assumption v−u ≥ 0 and (v−u)(x0) = 0,
it now follows from Theorem 2.2 that v ≡ u in Ω.
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To obtain the final conclusion of the theorem, one proceeds in the same way, though
starting from the alternative decomposition

0 ≥ F(x, v, Dv, D2v)−F(x, u, Du, D2u) = F(x, v, Dv,D2v)−F(x, v, Dv,D2u)

+ F(x, v, Dv,D2u)−F(x, v, Du,D2u) + F(x, v,Du, D2u)−F(x, u, Du, D2u).

�

The next result (essentially Satz 2′ of [20] in a more general context and formulation) is
stated as a comparison result, rather than a maximum principle, this being the underlying
content of Hopf’s result.
Theorem 2.4. (Comparison Lemma). Let u, v be C2(Ω) ∩ C(Ω) solutions of the non-
linear differential inequalities given in Theorem 2.3. Suppose that the matrix Q = Qij is
positive definite in Ω and that

Ψ =
∂F
∂u

(x,w, Dv, D2v) ≤ 0

for all functions w ≥ v (or simply for all functions w on Ω).
If u ≤ v on ∂Ω, then u ≤ v in Ω.
The terms u, Du in Q can be replaced by v, Dv if at the same time the terms Dv, D2v

in Ψ are replaced by Du, D2u and the condition w ≥ v is replaced by w ≤ u.

Proof. Suppose for contradiction that the conclusion v − u ≥ 0 in Ω fails.
Then there will be a subdomain Ω′ of Ω in which v−u ≤ 0 but is not identically constant,

and in which also v − u takes on a negative minimum M . As in the proof of Theorem 2.3
one obtains

L(v − u) + c(v − u) ≤ 0,
while by hypothesis c ≤ 0 in Ω′. Hence by Theorem 2.1 we get v − u ≡ M in Ω′, a
contradiction.

The final conclusion is obtained from the alternative decomposition in the proof of The-
orem 2.3. �

Using other decompositions, one can obtain various related results, e.g. Theorem 31 of
Chapter 2 of [26].

A direct consequence of Theorem 2.4 is a uniqueness theorem for the Dirichlet problem
for the nonlinear equation F(x, u,Du, D2u) = 0, a fact mentioned by Hopf in the final
paragraph of [20], though not explicitly formulated by him. Since the result is important,
and a precise formulation is in fact not immediate from Hopf’s analysis, it is worth stating
a definite result here.
Theorem 2.5. Let u and v be C2 solutions of the nonlinear equation

F(x, u, Du,D2u) = 0

in a domain Ω, with u = v on ∂Ω. Suppose Q is positive definite in Ω for all θ ∈ [0, 1], and
Ψ ≤ 0 in Ω for all functions w. Then u ≡ v.

This is an immediate corollary of Theorem 2.4, the main result being used to establish
that u ≤ v and the final part of the theorem to get v ≤ u. Here it is crucial that Ψ ≤ 0 for
all functions w.

It is surprising that the matrix Q in the hypothesis of Theorem 2.5 is, insofar as its
second and third arguments are concerned, to be evaluated solely on the functions u and
Du, without any symmetric reference to v and Dv.

Indeed specializing Theorem 2.5 to quasilinear equations, we find that for the equation

Aij(x,Du)D2
iju−B(x, u,Du) = 0

a sufficient condition for uniqueness is that the matrix Qij = Aij(x,Du) needs to be positive
definite (i.e. the equation needs to be elliptic) only when evaluated for either one (!) of the
solutions u or v, provided that B(x, u, ξ) is a non–decreasing function of u for arbitrary
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arguments x, ξ. This last result (essentially due to Hopf, though not explicitly mentioned
or stated by him) seems to have appeared first in [18], first edition, Chapter 8.

The result applies at once to the quasilinear operator

F = (1 + |Du|2)∆u−
∑ ∂u

∂xi

∂u
∂xj

∂2u
∂xi∂xj

(mean curvature), since clearly

Qij = (1 + |Du|2)Iij −DiuDju

is positive definite for all values of its arguments. Here of course there is no need to use the
full strength of Theorem 2.5. On the other hand, if we consider the Dirichlet problem

(1 + |Du|2)∆u− 2
∑ ∂u

∂xi

∂u
∂xj

∂2u
∂xi∂xj

= 0

in Ω, with u = 0 on ∂Ω, then the matrix Q is not positive definite for arbitrary arguments
D2u. Nevertheless Q = I for the function u ≡ 0, whence it follows that this function is the
unique solution of the stated Dirichlet problem.

A second and more subtle example is the elementary Monge–Ampère equation in R2

∂2u
∂x2

∂2u
∂y2 −

(

∂2u
∂x∂y

)2

= g(x, y).

Here one checks that

Qijξiξj =
∂2u
∂y2 ξ2

1 − 2
∂2u

∂x∂y
ξ1ξ2 +

∂2u
∂x2 ξ2

2 .

The discriminant of Q is then

det Q = detHu =
∂2u
∂y2

∂2u
∂x2 −

(

∂2u
∂x∂y

)2

,

which is precisely g = g(x, y) when evaluated at a solution u.
Suppose in particular that g > 0. It is easy to see then, that any solution u is either

everywhere strictly convex or everywhere strictly concave.
From this, one can check without difficulty that if u and v are two convex solutions then

Q is positive definite for the arguments D2
ij(θu + (1− θ)v).

Hence the Dirichlet problem for the elementary Monge–Ampère equation above has at
most one convex solution. On the other hand, if u and v are concave solutions, then −u
and −v are convex solutions and so, similarly, the Dirichlet problem can have at most one
concave solution; altogether then the problem can have at most two solutions. This result
is a special case of a theorem of Rellich [32]; see [7], page 324.

Other related maximum and comparison principles are discussed in the Notes to Chap-
ter 2 of [26], and in Chapter 10 of [18], to which the reader is strongly referred; see also the
references cited on page 314 of [42]. A viscosity based maximum principle for singular fully
nonlinear equations is given in [2].

Hopf’s proof technique, as noted above, leads to other results of fundamental interest,
particularly the celebrated Boundary Point Lemma and a Harnack principle for elliptic
equations having two independent variables; for this last result, see the paper [34] of J.
Serrin, reproduced in both [26] and [18]. A nonlinear version of the Harnack principle in
two variables has also been given recently in [28].

3. Some preliminary lemmas

Here we turn to the study of the strong maximum principle and of the compact sup-
port principle for divergence structure quasilinear elliptic operators and for nonlinear terms
f(u). In general, the results described cannot be obtained from the nonlinear theorems
of the previous section, since the operators and equations in question for the most part
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have specialized properties which are lost when they are written in the expanded form
F(x, u, Du, D2u) = 0 as required there.

We shall assume from here on, and throughout the paper unless otherwise mentioned
explicitly, that A and f satisfy (A1), (A2), (F1), (F2). Moreover, without loss of generality
(since we deal with non–negative solutions) one may suppose that

f(u) = 0 for u ≤ 0.

For convenience in what follows it is useful to extend the definition of the principal
operator Φ to all values real values of ρ by setting Φ(ρ) = −Φ(−ρ) when ρ < 0, unless
otherwise explicitly specified.

Following and refining [27], we require several preliminary lemmas.
Lemma 3.1. (i) For any constant σ ∈ [0, 1] there holds

F (σu) ≤ σF (u), u ∈ [0, δ].

(ii) Let w = w(t) be of class C1(0, T ), and write ′ = d/dt. If Φ◦w′ is of class C1(0, T ) then
H ◦ w′ is of class C1(0, T ), and in this case

[H(w′(t))]′ = w′(t)[Φ(w′(t))]′ in (0, T ).(3.1)

On the other hand, if H ◦w′ is of class C1(0, T ) and w′ > 0, then Φ◦w′ is of class C1(0, T )
and (3.1) continues to be satisfied.

To obtain (i), observe that σf(σu) ≤ σf(u) for u ∈ [0, δ], since f is non–decreasing.
Integrating this relation from 0 to u yields the result.

The first statement of (ii) is an immediate consequence of (1.4). The second part is also
a consequence of (1.4) together with a small lemma:

Let I be any interval of R and let

B(t) =
∫ a(t)

b(s)ds, t ∈ I,

where B ∈ C1(I); a, b ∈ C(I); and b > 0. Then a ∈ C1(I) and a′ = B′/(b ◦ a).
This is easily demonstrated by using difference coefficients and the integral mean value

theorem to get ∆B/∆t = b(a+θ∆a)∆a/∆t, 0 ≤ θ ≤ 1. The lemma then follows by dividing
by b(a + θ∆a) and letting ∆t → 0.
Lemma 3.2. Suppose f(u) > 0 for u > 0 and (in case H(∞) < ∞) that F (δ) < H(∞). If
τ ≥ 1 and (1.6) holds, then also

∫ δ/τ

0

ds
H−1(τF (s))

= ∞.

Similarly, if 0 < σ ≤ 1 and (1.7) is satisfied, then
∫ δ

0

ds
H−1(σF (s))

< ∞.

Proof. For small ε > 0, we have by Lemma 3.1 (i), with σ = 1/τ ,
∫ δ/τ

ε/τ

ds
H−1(τF (s))

≥
∫ δ/τ

ε/τ

ds
H−1(F (τs))

=
1
τ

∫ δ

ε

dt
H−1(F (t))

.

Letting ε → 0 and applying (1.6) gives the first result.
Again by Lemma 3.1 (i),

∫ δ

ε

ds
H−1(σF (s))

≤
∫ δ

ε

ds
H−1(F (σs))

=
1
σ

∫ δσ

εσ

dt
H−1(F (t))

and the second part now follows by letting ε → 0 and applying (1.7). �
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Lemma 3.3. Let T > 0 and assume

q ∈ C(0, T ), q > 0 in (0, T ).(3.2)

Then every classical distribution solution w = w(t) of the problem ( ′ = d/dt)
{

[sign w(t)] · [q(t)Φ(w′(t))]′ ≥ 0 in (0, T ),
w(0) = 0, w(T ) = m > 0

(3.3)

is such that

w ≥ 0, w′ ≥ 0 in (0, T ).(3.4)

Even more there exists t0 ∈ [0, T ) with the property that

w ≡ 0 in [0, t0]; w > 0, w′ > 0 in (t0, T ).(3.5)

Proof. We first claim that w ≥ 0 in [0, T ]. If the conclusion fails, there would be t0 and
t1, with 0 ≤ t0 < t1 < T such that w(t0) = w(t1) = 0 and w < 0 in (t0, t1). Then,
multiplying (3.3) by w and integrating on [t0, t1] yields by integration by parts (or simply
by the distribution meaning of solutions with the test function w(t) on [t0, t1])

∫ t1

t0
q(t)Φ(w′(t))w′(t)dt ≤ 0,

where the integrand is non–negative by (3.2) and the fact that ρΦ(ρ) > 0 for ρ 6= 0. That
is, necessarily w′ ≡ 0 on [t0, t1]. Hence w ≡ 0 on [t0, t1], since w(t0) = w(t1) = 0. This
contradiction proves the claim.

Define the set J = {t ∈ (0, T ) : w′(t) > 0}. Then, obviously, J 6= ∅, since w(0) = 0 and
w(T ) > 0, while also J is open in (0, T ) since w ∈ C1(0, T ). Let t0 = inf J , so t0 ∈ [0, T ) and
w ≡ 0 in [0, t0], since we already know that w ≥ 0 in [0, T ]. Now, for any fixed t ∈ (t0, T )
there obviously exists t1 ∈ (t0, t) such that w′(t1) > 0. By integration of (3.3) on [t1, t],
recalling that w ≥ 0 on (0, T ), we get

q(t)Φ(w′(t)) ≥ q(t1)Φ(w′(t1)) > 0

by (3.2) and (A2), so that w′ > 0 on (t0, T ]. In turn, by integration, w > 0 in (t0, T ),
proving (3.5). �

Remark. If in Lemma 3.3 the hypothesis (3.2) is strengthened to

q ∈ C(0, T ), q > 0 in (0, T ), q non–increasing,

then w′ is non–decreasing on [0, T ] and

0 ≤ w′(0) ≤ m
T

.(3.6)

Indeed from (3.3) and (3.4) it follows that q(t)Φ(w′(t)) is non–decreasing, and then since
q(t) is non–increasing also Φ(w′(t)) is non–decreasing. But Φ is increasing, so w′ is non–
decreasing. In turn, w is convex on [0, T ] and then (3.6) follows at once since w(T ) = m.

Lemma 3.4. Assume

q ∈ C[0, T ], q > 0 in (0, T ).(3.7)

Then along every classical distribution solution w of the problem
{

[q(t)Φ(w′(t))]′ − q(t)f(w(t)) ≤ 0 in (0, T ),
w(0) = 0; 0 ≤ w ≤ δ, w′ ≥ 0 in (0, T ),

(3.8)

there holds

Φ(w′(t)) ≤ f(w(t))
q(t)

∫ t

0
q(s) ds +

q(0)
q(t)

Φ(w′(0+)),(3.9)
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where w′(0+) is defined as lim supt→0+ w′(t).
In particular, if w′(0) = 0 then (3.9) reduces to

Φ(w′(t)) ≤ f(w(t))
q(t)

∫ t

0
q(s) ds.(3.10)

Proof. Integrating (3.8) on [τ, t], with 0 < τ < t < T , yields

q(t)Φ(w′(t))− q(τ)Φ(w′(τ)) ≤
∫ t

0
q(s)f(w(s))ds,(3.11)

and (3.9) follows at once by (F2), i.e., f(w(s)) ≤ f(w(t)) since 0 ≤ w(s) ≤ w(t) < δ,
together with the lim sup as τ → 0. �

Lemma 3.5. Assume (3.7) and

q ∈ C1(0, T ),
(

− q′(s)
q(s)2

)+ ∫ s

0
q(τ)dτ bounded on (0, t) for all t ∈ (0, T ).(3.12)

Then along every classical distribution solution w ∈ C1(0, T ) of the problem (3.8) for which
w′(0) = 0 and the condition

Φ(w′) is continuously differentiable(3.13)

is satisfied, 2 we have

H(w′(t)) ≤ B(t)F (w(t)), t ∈ (0, T ),(3.14)

where

B(t) = 1 + sup
s∈(0,t)

(

− q′(s)
q(s)2

∫ s

0
q(τ)dτ

)+

.(3.15)

Note that if q′ ≥ 0 , then (3.14) becomes H(w′(t)) ≤ F (w(t)).

Proof. Denote by E the energy function associated to w in (0, T ), namely

E(t) = H(w′(t))− F (w(t)).

Since Φ(w′) ∈ C1(0, T ) by assumption, so also H(w′) ∈ C1(0, T ) by Lemma 3.1 (ii). Then
by (3.1) and (3.8) one finds (since distribution derivatives of C1 functions can be treated
as ordinary derivatives)

E′(t) = w′{[Φ(w′(t))]′ − f(w(t))} ≤ −q′(t)
q(t)

Φ(w′(t))w′(t), t ∈ (0, T ),(3.16)

since by assumption w′ ≥ 0, q > 0 in (0, T ). Integrating (3.16) on (0, t), with 0 < t < T ,
yields

H(w′(t)) ≤ F (w(t))−
∫ t

0

q′(s)
q(s)

Φ(w′(s))w′(s)ds (since w′(0) = 0),

≤ F (w(t)) +
∫ t

0

(

− q′(s)
q(s)2

∫ s

0
q(τ) dτ

)+

f(w(s))w′(s) ds ≤ B(t)F (w(t))

by (3.10) and (3.15). �

Proposition 3.6. Assume (3.7) and (3.12). Let w be a classical distribution solution of
the problem

{

[q(t)Φ(w′(t))]′ − q(t)f(w(t)) ≤ 0 in (0, T ),
w(0) = 0, w(T ) = m > 0, w′ ≥ 0,

(3.17)

2For the main application of this lemma in Section 4 this condition holds without any difficulty; see
Proposition 4.4.
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for which (3.13) is satisfied. Suppose that f(u) > 0 for u > 0. If w′(0) = 0 then
∫ δ

0

ds
H−1(F (s))

< ∞.(3.18)

Proof. From the second line of (3.17) it is evident that there exists t0 ∈ [0, T ) such that
w(t) = 0 for 0 ≤ t ≤ t0 while w > 0 in (t0, T ). If t0 = 0, then w′(0) = 0 by hypothesis,
while if t0 > 0 then in turn w(t0) = w′(t0) = 0 since w ∈ C1(0, T ).

Let t2 ∈ (t0, T ). Clearly there exists t1 ∈ (t0, t2) such that m1 = w(t1) > 0 satisfies

m1 < δ/B, F (Bm1) < H(∞),

where B = B(t2) ≥ 1 is given in Lemma 3.5. From this lemma applied to the interval
(t0, t1), we thus obtain (see (3.14))

H(w′(t)) ≤ B(t)F (w(t)) ≤ BF (w(t)) in (t0, t1)

since B(t) is obviously non–decreasing. In turn by Lemma 3.1 (i), with σ = 1/B,

H(w′(t)) ≤ F (Bw(t)) in (t0, t1),

that is w > 0, w′(t) ≤ H−1(F (Bw(t))) on (t0, t1). Using the fact that f(u) > 0 for u > 0
(and so also F (u) > 0 for u > 0), integration now yields
∫ Bm1

0

du
H−1(F (u))

= B
∫ m1

0

dw
H−1(F (Bw))

= B
∫ t1

t0

w′(t)dt
H−1(F (Bw(t)))

≤ B(t1 − t0) < ∞,

as required. �

4. A singular two-point boundary value problem

In this section we shall obtain existence and uniqueness theorems for the differential
problems

{

[q(t)Φ(w′(t))]′ − q(t)f(w(t)) = 0 in (0, T ),
w(0) = 0, w(T ) = m > 0.

(4.1)

and
{

[q(t)Φ(w′(t))]′ − a(t)q(t)f(w(t)) = h(t) in (0, T ),
w(0) = 0, w(T ) = m > 0.

(4.2)

The following two main existence theorems, Propositions 4.1 and 4.3, will be crucial in
supplying radial comparison functions for the proofs in later sections. Importantly in these
propositions, we are able to use a weakened version of condition (F2), namely

(F3) f(0) = 0 and f is non–negative on some interval [0, δ), with δ possibly infinite.

Accordingly it will be assumed in both Propositions 4.1 and 4.3 that m ∈ (0, δ).
Finally, we shall suppose of the function q in (4.1) and (4.2) that it is of class C[0, T ]

with q > 0 in [0, T ]. Put

q0 = min
[0,T ]

q(t) > 0, q1 = max
[0,T ]

q(t) > 0.

Of course, in addition to (F3), conditions (A1), (A2), (F1) will be maintained throughout
the section.
Proposition 4.1. (i). Let Φ(∞) = ∞. Then problem (4.1) admits a classical distribution
solution with the properties

w ∈ C1[0, T ], Φ(w′) ∈ C1[0, T ]; w′ ≥ 0.(4.3)
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Moreover, for any such solution of (4.1) we have w′(T ) > 0 and

‖w′‖∞ ≤ Φ−1
(

q1

q0
[T f̄(m) + Φ(m/T )]

)

,(4.4)

where f̄(m) = maxu∈[0,m] f(u). In particular, w′ ≤ 1 if m is sufficiently small.
(ii) Suppose Φ(∞) = ω < ∞. Let m ∈ (0, δ) be such that

q1

q0
[T f̄(m) + Φ(m/T )] < ω.(4.5)

Then the conclusion of part (i) continues to hold.

Proof. For the purpose of this proof only, we shall redefine the operator Φ for ρ < 0 by
setting Φ(ρ) = ρ when ρ < 0; this can be done without loss of generality since the ultimate
solution w satisfies w′ ≥ 0.

Case (i). Let

µ1 = q1[T f̄(m) + Φ(m/T )](4.6)

and
I = [0, µ1].

It is convenient also to redefine f so that f(u) = f(m) for all u ≥ m. This will not affect
the conclusion of the proposition, since clearly any ultimate solution with w′ ≥ 0 satisfies
0 ≤ w ≤ m. We recall also the earlier agreement that f(u) = 0 for u ≤ 0.

With these preliminaries settled, we can proceed to the main proof. We shall make use of
the Leray–Schauder fixed point theorem, an idea suggested in this context by Montenegro.

Denote by X the Banach space X = C[0, T ], endowed with the usual norm ‖ · ‖∞, and
let T be the mapping from X to X defined by 3

T [w](t) = m−
∫ T

t
Φ−1

(

1
q(s)

[

µ−
∫ T

s
q(τ)f(w(τ))dτ

])

ds, t ∈ [0, T ],(4.7)

where µ = µ(w) ∈ I is chosen so that

T [w](0) = 0.(4.8)

We shall show that such a choice of µ is uniquely possible.
Indeed for any fixed w ∈ X and for any µ ∈ I we have

− f̄(m)
q0

∫ T

0
q(t) dt ≤ 1

q(s)

[

µ−
∫ T

s
q(τ)f(w(τ))dτ

]

≤ µ1

q0
.(4.9)

It follows now that T [w] is well defined for each fixed µ in I.
Moreover for µ = 0 we see that, for all w ∈ X,

T [w](0) ≥ m.

On the other hand, for µ = µ1 we find, for all w in X,

T [w](0) = m−
∫ T

0
Φ−1

(

q1

q(s)
Φ(m/T ) +

1
q(s)

[

q1T f̄(m)−
∫ T

s
q(τ)f(w(τ))dτ

])

ds

≤ m−
∫ T

0
Φ−1(Φ(m/T ))ds = 0,

3The simpler mapping

T [w](t) =
Z t

0
Φ−1

�
1

q(s)

�
κ +

Z s

0
q(τ)f(w(τ))dτ

��
ds

with κ = κ(w) chosen so that T [w](T ) = m, is in fact less convenient in carrying out the proof.
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where we have used the condition (4.6), the definition of q1, and the fact that 0 ≤ f(u) ≤
f̄(m). Since the integral on the right side of (4.7) is a strictly increasing function of µ for
fixed w, it is now obvious that there exists a unique µ ∈ I such that (4.8) holds.

Define the homotopy H : X × [0, 1] → X by

H[w, σ](t) = σm−
∫ T

t
Φ−1

(

1
q(s)

[

µσ − σ
∫ T

s
q(τ)f(w(τ))dτ

])

ds,(4.10)

where µσ = µ(w, σ) ∈ I is a number chosen such that

H[w, σ](0) = 0.

Clearly, as above, such a value µσ exists and is unique, and the mapping H[w, σ] is accord-
ingly well defined.

By construction, any fixed point wσ = H[wσ, σ] is of class C1[0, T ], has the property that
Φ(w′) ∈ C1[0, T ], and is a classical distribution solution of the problem

{

[q(t)Φ(w′σ(t))]′ − σq(t)f(wσ(t)) = 0 in [0, T ],
wσ(0) = 0, wσ(T ) = σm.

(4.11)

Moreover, by Lemma 3.3, a fixed point w = H[w, 1] satisfies w, w′ ≥ 0, and so is a solution
of problem (4.1) satisfying the conditioins (4.3), with w′ ≥ 0.

It remains to show that such a fixed point w = w1 exists. We shall use Browder’s version
of the Leray–Schauder theorem for this purpose (see Theorem 11.6 of [18]).

To begin with, obviously µσ = 0 when σ = 0, and so H[w, 0](t) ≡ 0 for all w in X, that
is H[w, 0] maps X into the single point w0 = 0 in X. (This is the first hypothesis required
in the application of the Leray–Schauder theorem at the end of the proof.)

We show next that H is compact and continuous from X × [0, 1] into X. Let (wk, σk)k
be a bounded sequence in X × [0, 1]. Clearly µσk ∈ I; therefore again using the fact that
0 ≤ f(u) ≤ f̄(m) for all u ≥ 0, together with (4.9), it is clear that

‖H′[wk, σk]‖∞ ≤ C ′,

where (recalling that Φ−1(ρ) = ρ when ρ < 0)

C ′ = max
{

f̄(m)
q0

∫ T

0
q(t)dt, Φ−1 (µ1/q0)

}

.(4.12)

It is now an immediate consequence of the Ascoli–Arzelà theorem that H maps bounded
sequences into relatively compact sequences in X.

We claim finally that H is continuous on X × [0, 1]. Indeed, let wj → w, σj → σ,
(wj , σj) ∈ X × [0, 1]. Then in (4.10) clearly σjf(wj) → σf(w), since the modified function
f is continuous4 on R. It must then be shown that µ(wj , σj) → µ(w, σ). To this end,
suppose for contradiction that this fails. Then, for some subsequence, still called (wj , σj),
we should have

µ(wj , σj) → µ̃ 6= µ = µ(w, σ).
In this case, from (4.8) one gets by subtraction

∫ T

0

{

Φ−1
(

1
q(s)

[

µ̃− σ
∫ T

s
q(τ)f(w(τ))dτ

])

− Φ−1
(

1
q(s)

[

µ− σ
∫ T

s
q(τ)f(w(τ))dτ

])}

ds = 0

(4.13)

But Φ−1 is a monotone increasing function of its argument, so clearly the integrand in (4.13)
is either everywhere positive or everywhere negative, giving the required contradiction.

4It is here that the condition f(0) = 0 in (F3) is crucial. In fact the proposition fails otherwise, as
shown by the example f(u) ≡ 1, q ≡ 1, and A(ρ) ≡ 1. In this case every non–negative solution of
(4.1) must have the form w(t) = at + 1

2 t2, a ≥ 0, which gives the extraneous condition for solvability
m = w(T ) = aT + 1

2T 2 ≥ 1
2T 2.
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To apply the Leray–Schauder theorem it is now enough to show that there is a constant
M > 0 such that

‖w‖∞ ≤ M for all (w, σ) ∈ X × [0, 1], with H[w, σ] = w.(4.14)

Let (w, σ) be a pair of type (4.14). But, as observed above, since w′ ≥ 0, clearly ‖w‖∞ =
w(T ) = σm ≤ m. Thus we can take M = m in (4.14).

The Leray–Schauder theorem therefore can be applied and the mapping T [w] = H[w, 1]
has a fixed point w ∈ X, which is the required solution of (4.1). That (4.3) holds for this
solution was noted earlier in the proof.

The last part of the theorem is a direct consequence of (4.7) evaluated at a fixed point
w, together with the right hand inequality of (4.9) and the fact that µ ∈ I.

Case (ii). The argument is exactly the same as before, with the single exception that in
(4.9) the right hand side µ1/q0 is now less than ω by virtue of (4.5). Thus, T is well–defined
in X, and the rest of the proof is unchanged. �

In view of (4.3) we note that, for the given solution w, all derivatives with respect to t
in (4.1) can equally well be understood as ordinary derivatives, no recourse to distribution
solutions in fact being needed.

The following lemma is important for the next proposition.
Lemma 4.2. Let condition (F3) hold, and assume Φ(∞) = ∞. Suppose also that q ∈ C[0, 1]
and that q is positive and non–increasing on [0, 1].

(i) Let w be any solution of (4.1) with m ∈ (0, δ) and T = 1. Then

w′(1) ≤ Φ−1
(

q(0)
q(1)

[f̄(m) + Φ(m)]
)

.(4.15)

(ii) Let w be any solution of (4.1) with m ∈ (0, δ) and T = 1, but now with the initial
condition w(0) = 0 replaced by w, w′ > 0 on [0, 1]. Then (4.15) continues to hold.

Proof. Case (i) follows from the second part of Proposition 4.1 (i), and the identifications
T = 1, q0 = q(1), q1 = q(0).

The proof of case (ii) lies deeper, relying on an idea in [17].
Let v = v(t) be a solution of (4.1) with m ∈ (0, δ) and T = 1, given by Proposition 4.1

(i), which exists since Φ(∞) = ∞ in the present case. Also q0 = q(1), q1 = q(0) so that
(4.4) implies

v′(1) ≤ Φ−1
(

q(0)
q(1)

[f̄(m) + Φ(m)]
)

,(4.16)

because T = 1. We shall show that

w′(1) ≤ v′(1)(4.17)

To see this, observe first by Lemma 3.3 that v ≡ 0 in [0, t0]; v, v′ > 0 in (t0, 1] for some
t0 ∈ [0, 1). By assumption the given solution w is also such that w, w′ > 0 in [0, 1]. Hence
we can introduce the C1 functions

t : [0,m] → [t0, 1], s : [w0, m] → [0, 1],

respectively inverse to v and w on the sets where v and w are positive; here w0 = w(0) > 0.
Clearly

s(w0) = 0, t(w0) > t0; s(m) = t(m) = 1,
and

s′(m) = 1/w′(1), t′(m) = 1/v′(1).
If for contradiction (4.17) fails, then w′(1) > v′(1) and s′(m) < t′(m). In this case, we claim
that there would be an interval (u1,m), with u1 ∈ (w0,m), such that

s(u) > t(u) > 0, 0 < s′(u) < t′(u) for u ∈ (u1,m); s′(u1) = t′(u1).(4.18)
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Indeed, since s(w0) < t(w0), the condition s′(u) < t′(u), which holds at u = m, cannot
persist for all smaller values of u in the open interval (w0,m). Thus there must be a first
point u1 ∈ (w0,m) where s′(u1) = t′(u1), and in turn the claim (4.18) follows at once.

Now by integration of (4.1) along the solution v(t) from t(u1) to 1, we derive
∫ m

u1

q(t(u))f(u)t′(u)du =
∫ 1

t(u1)
q(t)f(v(t))dt = q(1)Φ(v′(1))− q(t(u1))Φ(v′(t(u1))),

with a similar relation for the solution w. By subtraction
∫ m

u1

[q(t(u))t′(u)− q(s(u))s′(u)]f(u)du = q(1)[Φ(v′(1))− Φ(w′(1))]

− [q(t(u1))− q(s(u1))]Φ(v′(t(u1))),

since w′(s(u1)) = v′(t(u1)) by (4.18). The left hand side is non–negative by virtue of (F3),
condition (4.18), and the fact that q is positive and non–increasing; while the right hand
side is negative since v′(1) < w′(1) by the contradiction assumption and again the fact that
q is positive and non–increasing. This absurdity shows (4.17), and application of (4.16)
then completes the proof. �

Proposition 4.3. Let q satisfy the conditions given in the paragraph before Proposition 4.1,
and assume additionally that q is non–increasing.

(i) Suppose Φ(∞) = ∞ and let T ≥ 1, m ∈ (0, δ). Then problem (4.1) admits a classical
distribution solution with w ∈ C1[0, T ] and w ≥ 0. Moreover

‖w′‖∞ ≤ Φ−1
(

p1

p0
[f̄(m) + Φ(m)]

)

,(4.19)

where p0 = q(T ), p1 = q(T − 1).
(ii) Suppose Φ(∞) = ω < ∞ and T ≥ 1. Let m ∈ (0, δ) be such that

p1

p0
[f̄(m) + Φ(m)] < ω.(4.20)

Then the conclusion of part (i) continues to hold.

Proof. (i) Consider the auxiliary problem
{

[q(t)Φ(v′(t))]′ − q(t)f(v(t)) = 0 in (T − 1, T ),
v(T − 1) = 0, v(T ) = m,

(4.21)

where m ∈ (0, δ). We assert that (4.21) has a C1[T − 1, T ] solution with v′ ≥ 0 and

‖v′‖∞ ≤ Φ−1
(

p1

p0
[f̄(m) + Φ(m)]

)

.(4.22)

The existence in fact follows at once from Proposition 4.1 (i). To prove (4.22), it is enough
to translate to the present case the estimate (4.4) in Proposition 4.1 (i). But for this we
have obviously

q0 = min
[T−1,T ]

q(t) = q(T ) = p0, q1 = max
[T−1,T ]

q(t) = q(T − 1) = p1,

since q is non–increasing. Moreover, in (4.5) the length of the interval [T −1, T ] is of course
just 1. Hence (4.4) becomes exactly (4.22), as required.

We now apply the comparison Lemma 4.2 to the solution w of Proposition 4.1 (i) and the
solution v of (4.21) just determined. Their common interval of definition is just [T − 1, T ],
an interval of precisely length 1. Clearly w(T ) = v(T ) = m. Moreover either w(T − 1) = 0
or w(t), w′(t) > 0 for all t ∈ [T − 1, T ] – see Lemma 3.3.

We thus infer that w′(T ) ≤ v′(T ). But also w′(t) ≤ w′(T ) for all t ∈ [0, T ] in view of the
comment after Lemma 3.3. Consequently

w′(t) ≤ v′(T )
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and (4.19) now follows from (4.22). This proves case (i).

(ii) Let ω̂ denote the left hand side of (4.20). We introduce a new operator Φ̂, defined by

Φ̂(ρ) =











Φ(ρ) for 0 ≤ ρ ≤ Φ−1(ω̂)

ω̂
Φ−1(ω̂)

ρ for ρ ≥ Φ−1(ω̂).
(4.23)

Clearly Φ̂ is continuous and increasing on [0,∞), thus satisfying (A1) and (A2), and more-
over Φ̂(∞) = ∞.

We apply part (i) to problem (4.1), but with Φ replaced by Φ̂. Clearly a solution w exists,
and by (4.19) it obeys

‖w′‖∞ ≤ Φ̂−1
(

p1

p0
[f̄(m) + Φ̂(m)]

)

.(4.24)

Now from the given assumption (4.20) one finds

Φ(m) ≤ p0

p1
ω̂ ≤ ω̂,

since p0 ≤ p1, because q is non–increasing. It follows that m ≤ Φ−1(ω̂), so Φ̂(m) = Φ(m)
by (4.23). Therefore (4.24) becomes

‖w′‖∞ ≤ Φ̂−1
(

p1

p0
[f̄(m) + Φ(m)]

)

= Φ̂−1(ω̂) = Φ−1(ω̂),

again by (4.23). But this is just (4.19) for w, as required. �

Proposition 4.4. Suppose that (F2) is satisfied. Let q ∈ C[0, T ] with q > 0 in [0, T ], and
also assume condition (3.12) – or, slightly stronger, that q ∈ C1[0, T ). Suppose additionally
that either f(u) = 0 when u ∈ (0, µ), µ > 0, or that (1.6) holds, that is

∫ δ

0

ds
H−1(F (s))

= ∞.(4.25)

Then the solution of (4.1) given in either Proposition 4.1 or Proposition 4.3 has the prop-
erties

w > 0 in (0, T ], w′ > 0 in [0, T ].(4.26)

Proof. Case 1. Let f(u) = 0 when u ∈ (0, µ). Then from (4.1) we have [q(t)Φ(w′(t))]′ = 0
at least for t near 0. Hence in turn qΦ ◦ w′ = Constant > 0 for small t (if the constant is
zero, then w′ = 0 for small t > 0, and then by continuation for all t > 0, which contradicts
the boundary condition w = m at t = T ). Consequently w′(0) = Φ−1(Constant/q(0)) > 0,
so from Lemma 3.3 and the fact that t0 = 0 in the present case, we get w′(t) > 0 in [0, T ]
and w > 0 in (0, T ] as required.

Case 2. Let (4.25) hold. Note that (3.13) is satisfied in view of (4.3). Also we already
know that w′(0) ≥ 0 and 0 ≤ w ≤ m. In fact, the case w′(0) = 0 cannot occur by
Proposition 3.6 and assumption (4.25). Consequently w′(0) > 0 and the required conclusion
then follows as before. �

Remarks. If (A2) is strengthened by adding that q is in C1(0, T ) and Φ ∈ C1(R+) with
Φ′ > 0 in R+, then one finds easily that the solution w is in C2(0, T ). If also q′ ≤ 0, as is
frequently the case, then w′′ ≥ 0.

Proposition 4.1 can be improved by allowing a more general version of equation (4.1),
namely

[q(t)Φ(w′)]′ − q(t)B(t, w, w′) = 0,
provided that B is a continuous function of its variables such that

−κΦ(ρ) ≤ B(t, u, ρ) ≤ κΦ(ρ) + f(u), |ρ| ≤ 1,
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for some constant κ > 0 and for f = f(u) satisfying the previous assumptions (F1) and (F3).
The proof is essentially the same as before, with the exception that the space X = C[0, T ]
must be replaced by X = C1[0, T ] while the required mapping H[w, σ] is now defined by

H[w, σ](t) = σm−
∫ T

t
Φ−1

(

1
q(s)

[

µσ − σ
∫ T

s
B(τ, w(τ), w′(τ))dτ

])

ds.

This of course makes it more delicate to prove that the mapping is compact, though the
argument again follows from the Ascoli–Arzelà theorem. Similarly, proving that any fixed
point is uniformly bounded in X takes more effort, but no essentially new or difficult ideas,
see [29].

An existence theorem for the problem (4.2) can be given, exactly following the ideas of
Proposition 4.1.
Proposition 4.5. Assume a, h, q ∈ C[0, T ] and h ≥ 0, a ≥ 0, q > 0 in [0, T ]. Then
problem (4.2) with m ∈ (0, δ), and with m and

∫ T
0 h(t) dt suitably small in case Φ(∞) < ∞,

admits a classical distribution solution with the properties w ∈ C1[0, T ], w′ ≥ 0.
The proof goes in almost the same way as before for Proposition 4.1, except one must

take

µ1 = q1[a1T f̄(m) + Φ(m/T )] +
∫ T

0
h(t)dt, where a1 = max

t∈[0,T ]
a(t).

The question of uniqueness of solutions of (4.1) and (4.2) is also of interest. For this
result, we assume the main conditions (A1), (A2), (F1), (F2).
Theorem 4.6. Assume a, h, q ∈ C(0, T ) and a ≥ 0, q > 0 in (0, T ). Then problems (4.1)
and (4.2) admit at most one classical distribution solution with range in [0, δ).

Proof. Let w and w̃ be two solutions of (4.2) with ranges in [0, δ). Then by (4.2) together
with (A2) and (F2), we obtain

0 ≤
∫ T

0
q(t)[Φ(w′(t))− Φ(w̃′(t))] · [w′(t)− w̃′(t)]dt

= −
∫ T

0
a(t)q(t)[f(w(t))− f(w̃(t))] · [w(t)− w̃(t)]dt ≤ 0.

It now follows at once that w ≡ w̃ in [0, T ] since Φ is strictly increasing. �

It is possible to prove uniqueness with condition (F2) replaced by the weaker hypothesis
(F3), when m < δ̄ and q is non–increasing. We omit the discussion, the details being
essentially the same as in Theorem 5.3 (ii) in the next section.

5. Radial solutions of an exterior Dirichlet problem

In the next section we shall prove the necessity of Theorem 1.2 through the existence of
classical solutions of the exterior Dirichlet problem for (1.1), with equality sign. Because of
the separate and independent interest of this question, we devote the present section to its
consideration.

As in Section 4, we maintain conditions (A1), (A2), (F1). Moreover we consider in place
of (F3) the slightly stronger condition

(F3)′ f(0) = 0 and f is positive on some interval (0, δ), with δ possibly infinite.
Clearly (F3)′ implies (F3), while as noted before (F2) also implies (F3). At the same time
(F2) neither implies (F3)′ nor vice versa.
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Theorem 5.1. (Exterior Dirichlet Problem). Assume condition (F3)′ is satisfied, and
let ΩR = {x ∈ Rn : |x| > R}. Then for all R > 0 and m ∈ (0, δ), with m sufficiently small
if Φ(∞) = ω < ∞, there is a classical radial solution u(x) = u(r) of the problem

div{A(|Du|)Du} − f(u) = 0, u ≥ 0(5.1)

in ΩR, such that

u(R) = m, u(x) → 0 as |x| → ∞.(5.2)

Moreover u′ < 0 whenever u > 0.
The required smallness condition on m when ω < ∞ is given below by (5.3).

Proof. Let j = 1, 2, . . . , q(t) = (R + j − t)n−1 and denote by wj the solution of










[q(t)Φ(wt(t))]t − q(t)f(w(t)) = 0,
w(0) = 0, w(j) = m ∈ (0, δ),
wt ≥ 0 in [0, j],

which exists by Proposition 4.3 and the fact that q(t) is decreasing.
When ω < ∞ we must of course maintain condition (4.20), which in the present case

take the form (since T = j ≥ 1, p0 = q(j) = Rn−1, p1 = q(j − 1) = (R + 1)n−1),

f̄(m) + Φ(m) <
(

R
R + 1

)n−1

ω.(5.3)

It follows now that uj(r) = wj(t), t = R + j − r, is a solution of










[rn−1Φ(u′(r))]′ − rn−1f(u(r)) = 0 (′= d/dr),
u(R) = m, u(R + j) = 0,
u′ ≤ 0 in [R, R + j]

(here recall that Φ is defined for all real ρ, according to the agreement at the beginning of
Section 3, namely Φ(ρ) = −Φ(−ρ) if ρ < 0).

Now by (4.19) we have

‖u′j‖∞ ≤ Φ−1

(

(

R + 1
R

)n−1

[f̄(m) + Φ(m)]

)

.(5.4)

Hence from the Arzelà–Ascoli theorem (and a diagonal process) a subsequence of the func-
tions uj converges uniformly to a non-negative, non–increasing Lipschitz continuous limit
u on every compact subset of [R,∞).

We shall show that u is the required solution of (5.1), (5.2). Of course u : [R,∞) → [0,m],
with u(R) = m.

In fact uj satisfies on [R, R + j] the following integral equation corresponding to (4.7),

uj(r) = m−
∫ r

R
Φ−1

(

s1−n
[

µj −
∫ s

R
τn−1f(uj(τ))dτ

])

ds.

Moreover u′j(R) = −Φ−1(R1−nµj), so

µj = Rn−1Φ(|u′j(R)|) > 0.

Then by (5.4) we get
µj ≤ (R + 1)n−1[f̄(m) + Φ(m)].

Hence, up to a subsequence, if necessary, the bounded sequence still called (µj)j must
converge to some number µ ≥ 0. Letting j → ∞ the limit function u satisfies the integral
equation

u(r) = m−
∫ r

R
Φ−1

(

s1−n
[

µ−
∫ s

R
τn−1f(u(τ))dτ

])

ds.(5.5)
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But then u is continuous on [R,∞) by (5.5) and in turn then of class C1[R,∞); thus u is
also a classical distribution solution of

{

[rn−1Φ(u′(r))]′ − rn−1f(u(r)) = 0 in [R,∞),
u(R) = m; u ≥ 0, u′ ≤ 0 in [R,∞),

(5.6)

by (5.5). Of course, the equation on the first line of (5.6) is equivalent to (5.1) for radial
functions u = u(r).

To complete the proof of the theorem it therefore remains to show that u′ < 0 when
u > 0 and that u(r) → 0 as r →∞. To obtain the first, note by virtue of (5.6) that should
u′ = 0 at some point r0 where u > 0 then by (F3)′ we would have rn−1Φ(u′(r)) > 0 for all
r > r0 sufficiently close to r0, which is absurd.

For the second part, it is first of all the case that u must decrease to some non–negative
limit ` as r →∞. Suppose for contradiction that ` > 0. By (F3)′ and the fact that u′ < 0
(since u > 0), by integrating (5.6) on [r, r + 1], with R ≤ r < ∞, we get

Φ(u′(r + 1))−
(

r
r + 1

)n−1

Φ(u′(r)) =
1

(r + 1)n−1

∫ r+1

r
τn−1f(w(τ)) dτ

>
(

r
r + 1

)n−1 ∫ r+1

r
f(w(τ)) dτ.

(5.7)

From (F3)′ and the fact that ` ≤ u ≤ δ along the solution, one sees that f(u(r)) >
0. Hence by (5.6) again, we find that rn−1Φ(|u′(r)|) is decreasing and in turn also |u′|
decreasing. That is, u′ is negative and increasing. Consequently one must have u′(r) → 0
as r → ∞. Letting r → ∞ in (5.7) then yields 0 ≥ f(`) > 0, which is the required
contradiction. �

Theorem 5.2. Let the hypotheses of Theorem 5.1 be satisfied, and suppose also that condi-
tion (F2) is valid. Then the solution u given by Theorem 5.1 is everywhere positive provided
that (1.6) holds. Conversely if (1.7) is satisfied, then u has compact support.

The proof of the first part of this result will be given following Theorem 1.1 in the next
section. Similarly, the proof of the second part of the result will be deferred until after the
proof of Theorem 1.2.
Remark. Condition (5.3) is not best possible, and can be improved to the form

T0f̄(m) + Φ
(

m
T0

)

≤
(

R
R + T0

)n−1

ω,

where T0 > 0 is a positive parameter which can be assigned arbitrarily; this follows easily
by redoing Lemma 4.2 and Proposition 4.3 with the respective conditions T = 1 and T ≥ 1
replaced by T = T0 and T ≥ T0.

As an example, when R << 1 and A(ρ) = 1/
√

1 + ρ2 is the mean curvature operator,
with f(u) = κu, κ > 0, and n = 2 (equation of a capillary surface under gravity), by taking
T0 = aR with a >> 1 we get the solvability condition m < R; whereas from (5.3) one gets
the weaker condition m < R/(1 + κ).

An alternative approach to the radial exterior problem, containing a number of precise
estimates in the case when ω < ∞ and Ω′(0) > 0, has been given by Turkington [40].

We conclude the section by showing that the solution u = u(r) given in Theorem 5.1 is
unique, under various natural conditions. The precise results are as follows.
Theorem 5.3. Let m > 0 and R > 0 be fixed.

(i) Assume (F3)′ is satisfied. Then there cannot be more than one radial solution of
(5.1) in ΩR which has a bounded range in [0, δ) and satisfies u(R) = m. Moreover, any
such solution is convex and obeys (5.2).
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(ii) Assume (F3) is satisfied. Then there cannot be more than one radial solution of
(5.1), (5.2) in ΩR which has range in [0, δ).

(iii) Assume (F2). Then there cannot be more than one solution of (5.1), (5.2) in ΩR,
whether radial or not, which has range in [0, δ).

Proof. (i) Let u, v be two solutions of the type described. By the earlier arguments of
this section it is evident that u is strictly convex whenever it is positive. Hence u′ ≤ 0 for
otherwise u would become unbounded for large enough r, contrary to assumption. Then,
as in the proof at the end of Theorem 5.1, we get u(x) → 0 as |x| → ∞, that is (5.2) holds.
The same of course is true for the solution v.

But then u ≡ v by virtue of Theorem 3.6.7 of [17], when we observe that equation (∗) in
[17] is exactly (5.1) here, and condition (G1) there (with α replaced by δ) is just (F3) here.5

(ii) This is again just Theorem 3.6.7 of [17].
(iii) Uniqueness for this case is an immediate consequence of the following comparison

result, which we state in a more general form than necessary, in anticipation of later pur-
poses. �

Theorem 5.4. (Weak comparison principle). Assume (F2) is satisfied. Let u and v
be, respectively, classical solutions of (1.1) and (1.2) in a bounded domain Ω. Suppose also
that u and v are continuous in Ω, with v < δ in Ω and u ≥ v on ∂Ω. Then u ≥ v in Ω.

The conclusion also holds for exterior domains Ω, provided that additionally one has

lim inf{u(x)− v(x)} ≥ 0 as |x| → ∞.

Before proving Theorem 5.4 it is convenient to give a simple preliminary lemma
Lemma 5.5. Let ξ and η be vectors in Rn. Then

{A(|ξ|)ξ −A(|η|)η} · (ξ − η) > 0

whenever ξ 6= η.

Proof. Since A(ρ) > 0 when ρ > 0 and ξ · η ≤ |ξ| · |η|, there follows by direct calculation

{A(|ξ|)ξ −A(|η|)η} · (ξ − η) ≥ {Φ(|ξ|)− Φ(|η|)} (|ξ| − |η|)
and the conclusion now comes from the strict monotonicity of Φ. �

Proof of Theorem 5.4. We follow the proof of Lemma 3 of [30], first supposing that Ω is
bounded.

Let w = u − v in Ω. If the conclusion fails, then there exists a point x1 ∈ Ω such that
w(x1) < 0. Fix ε > 0 so small that w(x1) + ε < 0. Consequently, since w ≥ 0 on ∂Ω it
follows that the function wε = min{w + ε, 0} is non–positive and has compact support in
Ω. By the distribution meaning of solutions, taking the Lipschitzian function wε as test
function, we get

∫

Ω
{A(|Du|)Du−A(|Dv|)Dv}Dwε ≤

∫

Ω
{f(v)− f(u)}wε.(5.8)

The left hand side of (5.8) is positive due to Lemma 5.5 and the fact that Dwε ≡ Dw =
Du−Dv 6≡ 0 when w + ε < 0, while otherwise Dwε = 0 (a.e.).

Moreover, when w + ε < 0 there holds 0 ≤ u < v − ε < δ; hence f(v) − f(u) ≥ 0 since
f(s) is non–decreasing for s < δ by (F2). Thus the right hand side of (5.8) is non–positive,
a contradiction.

The case when Ω is an exterior domain is proved in almost exactly the same way. We
leave the details to the reader. �

5The proof of Theorem 3.6.7 in [17] relies on the preceding Theorems 3.6.1 – 3.6.5. All of these results
are straightforward, except possibly for Theorem 3.6.5. A simpler proof of the latter result can however be
given, using the ideas of Theorem 3.6.4.
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Theorem 5.4 is closely related to Theorem 10.1 of [18], and equally does not require
differentiability conditions for the nonlinear terms; see also Theorem 10.5.

6. Proofs of Theorems 1.1 and 1.2

With the work of the preceding two sections available, we can now turn to the main results
of the paper, proofs of the Strong Maximum Principle, Theorem 1.1, and the Compact
Support Principle, Theorem 1.2.
Proof of Theorem 1.1. We recall that Φ is defined for ρ < 0 by Φ(ρ) = −Φ(−ρ).

The radial function v(x) = w(t), t = R− r, r = |x|, where w is given by Proposition 4.1
with m < δ, q(t) = (R − t)n−1 and T = R/2, satisfies the differential equation (1.2) in the
annular set ER = {x ∈ Rn : R/2 ≤ |x| ≤ R}. Writing ′ = d/dt = −d/dr in accordance
with Proposition 4.1, one has Dv(x) = −w′(t)x/r for R/2 ≤ |x| ≤ R. Moreover w′(t) > 0
for t ∈ [0, R/2] by Proposition 4.4 and the fact that Φ(w′) is continuously differentiable (see
Proposition 4.1 (i)). Hence we find

div
{

A(|Dv|)Dv
}

− f(v) =− div
{

A(w′)w′x/r
}

− f(w)

=[Φ(w′)]′ − (n− 1)
r

Φ(w′)− f(w)

=
1

q(t)
[q(t)Φ(w′)]′ − f(w) = 0,

(6.1)

where at the second step we use D(A(w′)w′) = −[Φ(w′)]′x/r. Of course one has Dv(x) =
−w′(R− r)x/r 6= 0 in [R/2, R].

This being shown, the proof of sufficiency is now exactly the same as in the standard
demonstration of the strong maximum principle for linear equations (see e.g. the proof of
Theorem 3.5 on page 35 in [18]); here one uses the fact that the comparison function v
constructed above satisfies the following conditions, see the proof of Lemma 3.4 on page 34
in [18]:

(i) v > 0 in [R/2, R) by Proposition 4.4,
(ii) v = 0 when |x| = R by Proposition 4.1,
(iii) ∂v/∂n = v′ < 0 when |x| = R, where n is the outer normal to ∂ER,
(iv) v = m when |x| = R/2 by Proposition 4.1,

where m, R > 0 can be taken arbitrarily small and the origin of coordinates can be chosen
arbitrarily in Ω. Note that the use of the weak maximum principle (Corollary 3.2 of [18])
is here replaced by application of Theorem 5.4. This completes the proof of the sufficiency
part of Theorem 1.1.

As remarked in the introduction, the necessity is due to Diaz [11]. Hence Theorem 1.1
is proved (see also comment 4 at the end of the section and the further remarks at the end
of Section 7). �

Proof of first part of Theorem 5.2. Because of (1.6) the strong maximum principle is valid
for (1.1). But since u(R) = m > 0 and because u is a non–negative (radial) solution of
(1.1), it now follows that u > 0 on the entire domain of the solution. �

Proof of Theorem 1.2. To prove necessity, suppose (1.7) fails, that is (1.6) holds. By
Theorem 5.1 and the first part of Theorem 5.2, therefore, there exists a positive classical
solution u of (1.1) with equality sign (and thus also of (1.2) with equality), in the domain
ΩR = {x ∈ Rn : |x| > R}, such that u(x) → 0 as |x| → ∞. This violates the compact
support principle. Hence (1.7) is necessary.

For the sufficiency we follow the proof of Theorem 2 of [30]. By (1.7) we can define

C =
∫ δ

0

ds
H−1(F (s))

< ∞,(6.2)
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where, if necessary, one can take δ > 0 smaller so that F (δ) < H(∞). Introduce w = w(r),
0 ≤ r ≤ C, by

r =
∫ δ

w(r)

ds
H−1(F (s))

.(6.3)

Differentiation gives

− w′(r)
H−1(F (w(r))

= 1 for 0 ≤ r ≤ C,

that is, w is of class C1[0, C], with w(0) = δ, w(C) = 0, 0 ≤ w ≤ δ, and w′(r) < 0 for
0 ≤ r < C. Also H(|w′|) = F (w), so H(|w′|) is of class C1[0, C] with [H(|w′|)]′ = f(w)w′.
Then from Lemma 3.1 (ii) with T = C, we see that Φ(|w′|) is of class C1(0, C) and

−[Φ(|w′|)]′ = f(w) for 0 < r < C.(6.4)

Obviously w(r) → 0, w′(r) → 0 and [Φ(|w′|)]′ → 0 as r → C. Therefore, by defining
w(r) ≡ 0 for r ≥ C, it is clear that w becomes a C1 solution of (6.4) in (0,∞).

Now let u be the solution of (1.2) in an exterior domain Ω with u(x) → 0 as |x| → ∞.
We must show that u has compact support in Ω. To begin with, clearly there exists R0 ≥ R
such that u(x) < δ if |x| ≥ R0. For any x ∈ Ω0 = {x ∈ Rn : |x| > R0}, define
v(x) = w(|x| −R0). Consequently, for x ∈ Ω0, and r = |x|, we have

div{A(|Dv|)Dv} − f(v) = −[Φ(|v′|)]′ + (n− 1)
r

Φ(v′)− f(v) ≤ 0(6.5)

in view of (6.4) (which now holds in (0,∞)), and the fact that Φ(v′) ≤ 0 when v′ ≤ 0.
Since 0 ≤ u(x) < δ = v(x) on ∂Ω0, and since u(x), v(x) → 0 as |x| → ∞, we can apply the
comparison Theorem 5.4 (with the roles of u and v interchanged) to obtain 0 ≤ u(x) ≤ v(x)
in Ω0. In particular u(x) = 0 when |x| ≥ R1 = R0 + C, as required. �

Proof of second part of Theorem 5.2. Recall that (F3) holds by hypothesis. Then because
of (1.7) the compact support principle Theorem 1.2 is valid for equation (5.1). But since u
is a non–negative (radial) solution of (5.1) with u(x) → 0 as |x| → ∞, it now follows that
u has compact support in the domain |x| ≥ R. �

Remarks. 1. The sufficiency part of Theorem 1.2 is closely related to Theorem 4 of
[31], by specializing the results there to the matrix aij = A(|ξ|)δij + [A′(|ξ|)/|ξ|]ξiξj which
arises by expansion of the divergence term in (1.2). This specialization requires, however,
two assumptions which are not needed here, first that the operator A be of class C1(0,∞),
and second, that the solutions in consideration should be of class C2 at points of Ω where
Du 6= 0. In the proof of Theorem 4 of [31] it is not evident that an appropriate comparison
principle can be applied without the further assumption that the nonlinearity f be non–
decreasing for small u > 0 – that is, for the validity of Theorem 4 of [31] this additional
assumption, which is exactly (F2) above, seems to be required as well. For the special case
of the degenerate Laplacian, see also [13].

The proof of sufficiency we have given is in fact not different in its underlying ideas from
those in [4], [6], [13], [31], [41], the principal improvements here being the direct approach,
the generality of the solution class, and the clarification of the method.

We note also that Diaz, Saa and Thiel have stated a version of Theorem 1.1, see Theorem 6
of [14], but with insufficient proof.

2. The last sentence of the proof of Theorem 1.2 gives an a priori estimate for the support
of the solution u.

3. Theorem 1.2 also applies when f satisfies the alternative conditions:

(f1) f ∈ C(0,∞),
(f2) f is a maximal graph with f(0) = 0 and lim infu→0 f(u) > 0 (or +∞);
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rather than (F1), (F2). We can transform the vertical segment of f at u = 0 into a linear
segment with finite slope, thus arriving at a function f̄ ≤ f satisfying (F1) and (F2). But
then every solution of (1.2) remains a solution of (1.2) with f replaced by f̄ , and the
result of Theorem 1.2 continues to apply. A similar argument can be used also for maximal
monotone graphs f , see [41].

4. Another proof of the necessity of (1.6) for the Strong Maximum Principle. Suppose
f(u) > 0 for u > 0 and that (1.6) fails, that is (1.7) holds. We can then introduce the
function w = w(r), defined on [0,∞), as in the proof of Theorem 1.2. For any x ∈ Rn

+ =
{x ∈ Rn : xn > 0}, let u(x) = w(xn). By (6.4), u is obviously a solution of (1.1), with the
equality sign, in the domain Ω = Rn

+. Clearly u(0, . . . , 0, C) = w(C) = 0 and at the same
time u 6≡ 0 in Ω. Hence the strong maximum principle fails. �

5. The necessity of condition (1.6) for the Strong Maximum Principle can be obtained
under a weaker hypothesis than (F2). In fact, it is enough to replace (F2) by

(F2)′ f(0) = 0 and F (s) > 0 for s ∈ (0, δ).

This is because the principal construction required for Diaz’ proof uses only condition (F2)′;
see also the construction of the function w = w(r) noted just above.

6. The necessity also yields a direct and simple counterexample to the unique contin-
uation question for the equation div{A(|Du|)Du} − f(u) = 0, when (1.7) holds. That is,
the function u(x) = w(xn) shows that a solution in a domain Ω may vanish in a subdo-
main without vanishing throughout Ω. Theorems 7.2 and 7.5 below give more sophisticated
counterexamples.

7. Dead cores

An elliptic equation or inequality is said to have a dead core solution u in some domain
Ω ⊂ Rn provided that there exists an open subset Ω1 with compact closure in Ω such that

u ≡ 0 in Ω1, u > 0 in Ω \ Ω1.

The condition u > 0 could be replaced by u 6= 0, but for definiteness (and physical reality)
we prefer the condition as stated.

In what follows we maintain the original conditions (A1), (A2), (F1), (F2), unless other-
wise stated. The additional condition

f is positive in (0, δ)(7.1)

will also be important.
Lemma 7.1. (Dead core lemma). Suppose (7.1) and (1.7) are satisfied. For fixed σ in
(0, 1), define

Cσ =
∫ δ

0

ds
H−1(σF (s))

(> 0).(7.2)

Then for every C ∈ (0, Cσ) there exists a number γ = γ(C) ∈ (0, δ) and a function w ∈
C1[0, C] such that
(i) γ → 0 as C → 0,

(ii) w(0) = w′(0) = 0, w(C) = γ; 0 ≤ w′ ≤ H−1(F (γ)),

(iii) [Φ(w′(t))]′ = σf(w(t)) for t ∈ (0, C),

(iv) Φ(w′(t)) ≤ σtf(w(t)) for t ∈ (0, C).

[Here we can assume without loss of generality that σF (δ) < H(∞).]
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Proof. First note that the integral in (7.2) is convergent, in view of Lemma 3.2 and (1.7).
For given C ∈ (0, Cσ), we take γ ∈ (0, δ) so that

0 < C =
∫ γ

0

ds
H−1(σF (s))

;

clearly γ = γ(C) is uniquely determined by C, and of course γ → 0 as C → 0.
Now define w : [0, C] → R by

t =
∫ w(t)

0

ds
H−1(σF (s))

.

Hence
w′(t)

H−1(σF (w(t)))
= 1,

that is H(w′) = σF (w) and in turn [H(w′)]′ = σf(w)w′. Obviously part (ii) of the Lemma
is satisfied; moreover, since w′ > 0 on (0, C], from Lemma 3.1(ii) we obtain part (iii).

An integration using parts (ii), (iii) and (F2) shows that also Φ(w′(t)) ≤ σtf(w(t)); see
the proof of Lemma 3.4. This completes the proof. �

Theorem 7.2. Suppose (7.1) and (1.7) are satisfied. Let R > 0 be fixed. Then the equation

div{A(|Du|)Du} − f(u) = 0(7.3)

admits a non–negative dead core solution in BR.

Proof. Fix σ = 1/n. Take 0 < C < min{Cσ, R} and put S = R − C. Define the radial
function v(r) = w(r − S), r = |x| ∈ [S, R], where γ = γ(C) and w(t) are as given in
Lemma 7.1. Then for r ∈ (S, R)

div {A(|Dv(x)|)Dv(x)} − f(v(x)) = [Φ(v′(r))]′ +
n− 1

r
Φ(v′(r))− f(v(r))

≤
{

σ
[

1 + (n− 1)
r − S

r

]

− 1
}

f(v(r))

≤ (σn− 1)f(v(r)) = 0,

(7.4)

where we have used parts (iii) and (iv) of Lemma 7.1, and the fact that f(v(r)) > 0 since
v((S, R]) ⊂ (0, δ). Of course also

v(S) = v′(S) = 0, v(R) = γ < δ.

Consider the radial solution u = u(r), r = |x|, of the problem
{

div {A(|Du|)Du} − f(u) = 0,
u(S) = 0, u(R) = m > 0,

given by Proposition 4.1, with q(r) = rn−1 and with m ∈ (0, γ) suitably small (translate
coordinates by r = t + S and take T = R − S = C). Also suppose (4.5) is obeyed if
Φ(∞) < ∞.

Now apply Theorem 5.4, with the roles of u and v interchanged. This gives 0 ≤ u(r) ≤
v(r), r ∈ [S,R]. Hence u′(S) = 0 since v′(S) = 0. Therefore u can be extended as a solution
of (7.3) to the entire set BR by putting u ≡ 0 in BS . This proves the existence of the
required dead core solution of (7.3). �

Theorem 7.3. Suppose (7.1) and (1.7) are satisfied. Let R > 0 be fixed. Then any solution
u of (1.2) in BR with range in [0, δ) and for which u(x) is suitably small on ∂BR, is a dead
core solution.

This is shown in the same way as Theorem 7.2.



28 P. PUCCI AND J. SERRIN

Corollary 7.4. Suppose condition (F2) is replaced by the assumption that f is non–decrea-
sing in (−δ, δ). Assume also that uf(u) > 0 for u 6= 0 and that (1.7) holds for both ranges
(0, δ) and (−δ, 0).

Let u be a solution of

[sign u(x)] · [div{A(|Du|)Du} − f(u(x))] ≥ 0

in BR with range in (−δ, δ). Then u vanishes in BS for some S ∈ (0, R), provided |u(x)| is
suitably small on ∂BR.

For p–regular equations (see Section 11), and therefore in particular without monotonicity
conditions, this result was obtained by Diaz and Veron [15].

Lemma 7.1 gives a companion result to Proposition 4.4. Namely, let (7.1) and (1.7) be
satisfied. Then if m is suitably small the solution of (4.1) given by Proposition 4.1 has the
property w′(0) = 0. The proof is obvious, after what has gone before.

We conclude by noting the existence of compact support solutions of equation (1.2), with
the equality sign. In fact, one can interpret a compact support solution as a dead core at
infinity.
Theorem 7.5. Suppose (7.1) and (1.7) are satisfied. Let R > 0 be fixed. Then (7.3) admits
a (non–trivial) non–negative compact support solution in ΩR = {x ∈ Rn : |x| > R}.

This is just the second part of Theorem 5.2. A related result for the p–Laplace operator
is well–known, see [13].

Of course, if (1.7) fails, the strong maximum principle shows that a non–negative compact
support solution would in fact vanish identically.

A dead core with bursts. It is known that when (7.1) and (1.7) hold and when f appro-
priately changes sign for u > δ, there are non–negative radially symmetric solutions v of
(7.3) having compact support; see for example [17]. Let R1 be the support radius of such
a solution. Next choose R and S in Theorem 7.2 so that S >> R1, and let w denote the
corresponding dead core solution. This being done, we can now replace the solution w on
the set BR1 , where it vanishes, by the solution v, thus obtaining a new solution u which is
then positive in BR1 and BR \BS , and otherwise vanishes. This solution may be considered
as a dead core with a symmetric burst centered at the origin.

Of course, the same procedure may be repeated at other suitably chosen origins in BS ,
giving rise to multiple bursts. Naturally a given ball BS can accomodate only a certain
number of bursts, but the larger are R and S the more bursts which can be allowed.
Remarks. The existence of a dead core in Theorem 7.2 supplies still another counter-
example to the strong maximum principle when (1.7) holds. It is worth pointing out here
that this counterexample is in fact a solution of equation (7.3); that is one proves in this
way a sharper version of the necessity of condition (1.6) for the strong maximum principle.

The results of Theorems 7.2 and 7.3 can be extended to more general quasilinear cases,
as anticipated in the Remark at the end of Section 4. See the forthcoming paper [29].

We wish to thank Professor L.A. Peletier for helpful discussions concerning the material
of this section.

8. More general quasilinear inequalities

Let D be a domain in Rn. Let [aij(x, u)], i, j = 1, · · · , n, be a continuously differentiable,
symmetric coefficient matrix defined for x ∈ D, u ≥ 0, and which is positive definite in
these variables, namely

aij(x, u)ηiηj > 0, η ∈ Rn \ {0}.(8.1)

We shall suppose furthermore that the principal operator A = A(ρ) satisfies the following
strengthened versions of (A1), (A2), namely
(A1)′ A ∈ C1(0,∞),
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(A2)′ Φ′(ρ) > 0 for ρ > 0, and Φ(ρ) → 0 as ρ → 0.

8.1. The strong maximum principle

Consider the differential inequality

Di{aij(x, u)A(|Du|)Dju} −B(x, u, Du) ≤ 0, u ≥ 0,(8.2)

in a domain Ω ⊂ D.
We shall treat the following main conditions on the (continuous) function B(x, u, ξ):
(B1) B(x, u, ξ) ≤ κΦ(|ξ|) + f(u),
(B2) B(x, u, ξ) ≥ −κΦ(|ξ|) + g(u)

for x ∈ Ω, u ≥ 0, and all ξ ∈ Rn with |ξ| ≤ 1, where κ > 0 and the nonlinearities f , g obey
(F1) and (F2).

It is interesting to observe that for the validity of the following results the function
B(x, u, ξ) need not be non–decreasing in the variable u! This corresponds to the situation
of Theorem 2.2 where the coefficient c(x) is not required to satisfy a sign condition for the
validity of the conclusion. (For a statement of the strong maximum principle, see the second
paragraph preceding Theorem 1.1.)
Theorem 8.1. (Strong maximum principle). Assume (B1). For the strong maximum
principle to hold for (8.2) it is sufficient that either f ≡ 0 in [0, µ), µ > 0, or that (1.6) is
satisfied.

Assume (B2). For the strong maximum principle to hold for (8.2) it is necessary that
either g ≡ 0 for u ∈ [0, µ), µ > 0, or that

∫ δ

0

ds
H−1(G(s))

= ∞(8.3)

holds, where G(u) =
∫ u
0 g(s)ds.

The sufficiency was obtained in Theorem 1′ of [30] under the additional technical as-
sumption (2.5) of [30], and in Theorem 3 of [27] without the assumption (2.5) of [30]. In
both papers, moreover, the matrix aij was assumed to be independent of the variable u. For
other comments on earlier work, see the Introduction and also Section 4 of [30].

Proof. Sufficiency. We follow the proof of Theorem 3 of [27], using however a modified
version of the auxiliary function constructed in Proposition 4.1.

We first introduce the modified coefficient matrix

âij(x) ≡ aij(x, u(x)),

obviously still continuously differentiable in Ω. Let O be an arbitrary origin in Ω. Put
ER = {x ∈ Rn : R/2 ≤ |x| ≤ R} where R is supposed sufficiently small that ER is in Ω.
Define

λ = min eigenvalue of [âij(x)] in ER = min eigenvalue of [aij(x, u(x))] in ER,

Λ = max eigenvalue of [âij(x)] in ER = max eigenvalue of [aij(x, u(x))] in ER,
and let α be a constant such that

|ξjDi âij(x)| ≤ α|ξ|
for all x ∈ ER and ξ ∈ Rn. Clearly such a constant α exists since u ∈ C1(Ω) and ER is a
compact subset of Ω. It is easy to see that

Di

(

âij(x)
xj

r

)

= (Di âij(x))
xj

r
+

âij(x)
r

(

δij −
xixj

r2

)

,

so for x ∈ ER,
∥

∥

∥Di

(

âij(x)
xj

r

)∥

∥

∥ ≤ α +
n− 1

r
Λ.(8.4)
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Define

k =
(n− 1)Λ + (α + κ)R

λ
.

We can now introduce the radial Hopf–type comparison function v(x) = w(t), t = R− r,
r = |x|, where w is the unique solution (see Theorem 4.6) of (4.1), given by Proposition 4.1
when m < δ, q(t) = (R− t)k, T = R/2 and f is replaced by f/λ. Moreover, since

∫ δ

0

ds
H−1(λ−1F (s))

= ∞

by Lemma 3.2 and (1.6), one sees that Proposition 4.4 applies to the solution w.
Thus Dv(x) = −w′(R − r)x/r 6= 0 in ER. Also, by restricting m to be even smaller if

necessary – see Proposition 4.1 – one can maintain

0 < |Dv| < 1.(8.5)

Now we can carry out the following crucial calculation:
Di{âij(x)A(|Dv|)Djv} − κΦ(|Dv|)− f(v)

= âij(x)
xixj

r2 [Φ(w′)]′ −Di

{

âij(x)
xj

r

}

Φ(w′)− κΦ(w′)− f(w)

≥ âij(x)
xixj

r2

{

[Φ(w′)]′ − k
r
Φ(w′)− f(w)

λ

}

= âij(x)
xixj

r2

{

1
q(t)

[q(t)Φ(w′)]′ − f(w)
λ

}

= 0

(8.6)

by construction of w, that is

Di{âij(x)A(|Dv|)Djv} − κΦ(|Dv|)− f(v) ≥ 0(8.7)

in ER, with
v ≥ 0, 0 < |Dv| < 1; v(R/2) = m, v(R) = 0.

We next require a comparison result corresponding to Theorem 5.4, but applying to the
more general inequality (8.2).

Lemma 8.2. (Comparison lemma). Let u and v be respectively solutions of (8.2) and
(8.7) in a bounded domain Ω, and let (B1) be satisfied. Suppose that u and v are continuous
in Ω; and that

0 ≤ v < δ, 0 < |Dv| < 1 in Ω; u ≥ v on ∂Ω.

Then u ≥ v in Ω.

Proof. By (8.7) we have

Di{aij(x, u(x))A(|Dv|)Djv} − κΦ(|Dv|)− f(v) ≥ 0, 0 ≤ v < δ, |Dv| < 1,

in Ω, while from (8.2) and (B1),

Di{aij(x, u(x))A(|Du|)Dju} − κΦ(|Du|)− f(u) ≤ 0, u ≥ 0,

this being valid of course only when |Du| ≤ 1.
In turn, since |Du| + |Dv| ≥ |Dv| > 0, we can apply Theorem 10.1 (together with the

remark after Corollary 10.4). In particular, Lemma 8.2 follows from the identifications
a = 0, b = 1, and

Âi(x, ξ) = A(|ξ|)aik(x, u(x))ξk; B̂(x, z, ξ) = κΦ(|ξ|) + f(z), |ξ| ≤ 1

provided we show that the matrix [Dξj Â
i(x, ξ)] is positive definite for ξ 6= 0. But

Dξj Â
i(x, ξ) = aik(x, u(x))bkj(ξ),

where

bkj(ξ) = A(|ξ|)δkj +
A′(|ξ|)
|ξ|

ξkξj , ξ 6= 0.
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The matrix [bkj(ξ)] has eigenvalues A(|ξ|) (repeated n−1 times) and Φ′(|ξ|). By assumption
(A2)′ we have Φ′(|ξ|) > 0 for ξ 6= 0, while also

A(|ξ|) = Φ(|ξ|)/|ξ| > 0, for ξ 6= 0,

again by (A2)′. Hence [bij ] is positive definite for ξ 6= 0. Because [aij(x, u)] is assumed
positive definite, it now follows that [Dξj Âi(x, ξ)] is positive definite for x ∈ Ω and ξ 6= 0,
completing the proof. �

The point of Lemma 8.2 is that if |Dv| > 0 in Ω, then just as for Theorem 5.4 it is
not necessary to have ellipticity at the value ξ = 0. We remark that it is exactly in the
application of this lemma that the strengthened condition (A2)′ is needed.

The rest of the proof of sufficiency in Theorem 8.1 is now essentially the same as the
sufficiency part of Theorem 1.1. The main change is that at the last step we rely on
Lemma 8.2 instead of Theorem 5.4.

Necessity. This follows the corresponding arguments in Theorem 1.1. It is necessary to
exhibit, for each x0 in D, a domain Ω in D with x0 in Ω, and a solution v of (8.2) in Ω such
that v(x0) = 0 but v 6≡ 0 in Ω.

The assumption to be made for this purpose is that (B2) holds, with g(u) > 0 for u > 0,
together with the negation of (8.3), namely

∫ δ

0

ds
H−1(G(s))

< ∞.(8.8)

Choose R < 1 so small that the closure of the domain Ω = BR(x0) is in D. As at the
beginning of the proof, let

λ = min eigenvalue of [aij(x, z)] in Ω, Λ = max eigenvalue of [aij(x, z)] in Ω

for all values 0 ≤ z ≤ δ. Also let α be such that

|ξjDi aij(x, u(x))| ≤ α|ξ|
when x ∈ Ω, ξ ∈ Rn, 0 ≤ u(x) ≤ δ, |Du| ≤ b = H−1(G(δ)). As before, clearly such a value
a can be found. Finally, define

σ = (nΛ + α + κ)−1,

where κ is given by (B2).
Consider the dead core function v(r) = w(r − S), S ≤ r ≤ R, r = |x − x0|, given in

Theorem 7.2 (and using the notation there), but constructed with the function f replaced
instead by g and with the new value of σ given above. Clearly v can be extended as a C1

function to all of Ω by putting v ≡ 0 for 0 ≤ r < S.
Then we find, see (7.4),

Di
{

aij(x, v(x))A(|Dv|)Djv
}

−B(x, v(x), Dv(x))

≤ Di
{

aij(x, v(x))A(|Dv|)Djv
}

+ κΦ(|v′|)− g(v) by (B2)

≤ aij(x, v(x))
xixj

r2 [Φ(|v′|)]′ +
(

α + κ + Λ
n− 1

r

)

Φ(|v′|)− g(v)

≤ Λσg(v) +
(

α + κ + Λ
n− 1

S

)

Cσg(v)− g(v)

≤ [σ(nΛ + α + κ)− 1]g(v) = 0;

(8.9)

in obtaining (8.9), note first that when r = |x − x0| < S there is nothing to show since
v ≡ 0; on the other hand, for r ≥ S we apply the estimates of Lemma 7.1 in the same
way as in previous proofs, together with the relations 0 < C < R ≤ 1 and 0 < C ≤ S; see
the proof of Theorem 7.2. Since v has the dead core BS(x0), and is otherwise positive in
Ω = BR, the proof is complete. �
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Corollary 8.3. Assume that both (B1) and (B2) are satisfied, and that there exists c > 0
such that g(u) ≥ cf(u) for u ∈ [0, δ]. Then the strong maximum principle holds for (8.2) if
and only if either f ≡ 0 in [0, µ], µ > 0, or (1.6) holds.

We close the section with the following useful boundary point lemma, which will be
required for the proof of Theorem 8.5 below.

Corollary 8.4. (Boundary point lemma). Let x0 ∈ ∂Ω and suppose that Ω satisfies an
interior sphere condition at x0.

Let u be a C1 solution of (8.2) in Ω, with u > 0 in Ω and u = 0 at x0. Assume that (B1)
holds and that either f ≡ 0 in [0, µ), µ > 0, or that (1.6) is satisfied. Then ∂u/∂n < 0 at
x0, where n is the outer normal to ∂Ω at x0.

Proof. By the interior sphere condition there exist y ∈ Ω and R > 0 such that the open
ball BR(y) ⊂ Ω and x0 ∈ ∂B. Let v be the solution of (8.7) given in Theorem 8.1 and put
ũ(x) = v(|x− y|). Then as from Lemma 8.2 it follows that

u(x) ≥ ũ(x) in BR(y) \BR/2(y)

provided that m > 0 is sufficiently small. This completes the proof, since ∂ũ/∂n = v′(R) <
0. �

8.2. The compact support principle

There is a corresponding compact support principle for the reversed inequality

Di{aij(x, u(x))A(|Du|)Dju} −B(x, u, Du) ≥ 0, u ≥ 0, x ∈ Ω,(8.10)

where Ω is unbounded, with ΩR = {x ∈ Rn : |x| > R} ⊂ Ω ⊂ D for some R > 0. (For the
statement of the compact support principle, see the first paragraph before Theorem 1.2 in
the Introduction.)

The conditions on the matrix aij(x, u) now however must be somewhat strengthened
since the compact support principle deals with neighborhoods of ∞. Specifically, we shall
require that, for x ∈ Ω and 0 ≤ u < δ,

λ|η|2 ≤ aij(x, u)ηiηj ≤ Λ|η|2(8.11)

for some positive constants λ, Λ. Moreover, for x ∈ Ω, and for functions u = u(x) such that
0 ≤ u(x) < δ and |Du(x)| ≤ b for some b, b ≥ 1 say, we assume that

‖Diaij(x, u(x))‖ ≤ α(8.12)

for a constant α ≥ 0.
Finally we shall suppose for the rest of the section that any solution u of (8.10) under

consideration is such that |Du(x)| ≤ b in ΩR for some R > 0. (This condition can be
dropped if the coefficient matrix [aij ] is independent of u. Of course, it is to be expected
that solutions u(x) which approach 0 as |x| → ∞ will satisfy this condition for some domain
ΩR and constant b, but this would certainly require further regularity assumptions on the
equation.)

Theorem 8.5. (Compact support principle). For the compact support principle to
hold for (8.10) it is sufficient that (B2) is satisfied with g(u) > 0 for u > 0, and

∫ δ

0

ds
H−1(G(s))

< ∞.(8.13)

On the other hand, if (B1) is satisfied with f(u) > 0 for u > 0, then for the compact
support principle to hold for (8.10) it is necessary that (1.7) is satisfied.
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Proof. We first prove necessity. Here it will enough to show the existence of a radial solution
v = v(r) of the problem in ΩR

{

Di{aij(x, v(x))A(|Dv|)Djv} −B(x, v, Dv) ≥ 0, in ΩR,
v(R) = m, v(r) → 0 as r →∞; v > 0, v′ < 0 in ΩR,

(8.14)

where (B1) holds with f(u) > 0 for u > 0 and also, by negation, condition (1.6) is satisfied.
To this end, as shown in (8.6) it is enough to consider the equation

[Φ(v′)]′ +
1
λ

(

α + κ +
n− 1

r
Λ

)

Φ(v′)− f(v)
λ

= 0, 0 ≤ v < δ, −1 ≤ v′ < 0,

where λ and α are given by (8.11) and (8.12), respectively.
That is, the problem becomes











[q̃(r)Φ(v′)]′ − q̃(r)f̃(v) = 0, in [R,∞),
v(R) = m, v(r) → 0 as r →∞,
v > 0, −1 < v′ < 0 in ΩR,

(8.15)

where ′ = d/dr and q̃, f̃ are given by

q̃(r) = r(n−1)λ−1Λe(a+κ)λ−1r, f̃(v) = f(v)/λ.

Of course, f̃(v) continues to obey (1.7), by Lemma 3.2.
The required solution can now be constructed (for suitably small m) exactly as in the

proof of Theorem 5.1, with only the change that q(r) = rn−1 is replaced by the new function
q̃(r), and f(v) by f̃(v). Note here, in particular, that

q̃(r)
q̃(r + 1)

= e−(α+κ)/λ
(

r
r + 1

)(n−1)Λ/λ

,

which approaches the positive limit e−(a+κ)Λ/λ as r →∞, cf. the corresponding calculation
(5.7). This completes the proof of necessity.

The proof of sufficiency is also somewhat delicate. Here the basic method is taken from
Theorem 2′ of [30], with some modifications to avoid applying the superfluous technical
assumption (2.5) of [30].

We first construct an appropriate radial comparison function v = v(r). Fix σ ∈ (0, 1) by

σ = (Λ + α + κ)−1.

We take C < min{1, Cσ} and

v(r) = w(R + C − r), R ≤ r ≤ R + C,

where w is the function given in Lemma 7.1, corresponding to the given values of σ and
C, and of course with f(u) replaces by g(u). Obviously v(R) = w(C) = γ (< δ) and
v(R + C) = v′(R + C) = 0. We can thus suppose that v is extended to all r ≥ R by taking
v(r) ≡ 0 for r > R + C.

To check that v has the required property of an upper comparison function, we have with
the help of Lemma 7.1 (and recalling that v′ ≤ 0),

Di
{

aij(x, u(x))A(|Dv|)Djv
}

+ κΦ(|v′|)− g(v)

≤ −aij(x, u(x))
xixj

r2 [Φ(|v′|)]′ +
(

α + κ− Λ
n− 1

r

)

Φ(|v′|)− g(v)

≤ aij(x, u(x))
xixj

r2 σg(v) + (α + κ)σg(v)− g(v) (since C ≤ 1)

≤ [σ(Λ + α + κ)− 1]g(v) = 0;

the steps in this calculation are essentially the same as those previously used to derive (8.9).
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In summary, we have

Di
{

aij(x, u(x))A(|Dv|)Djv
}

+ κΦ(|v′|)− g(v) ≤ 0(8.16)

in ΩR. Of course v ≡ 0 for |x| ≥ R1 = R + C, while v > 0 for R ≤ |x| < R1, and v(R) = γ.
It can also be observed that γ = δ if Cσ ≤ 1 but γ < δ otherwise.

Now consider a solution u of the inequality (8.10) in an exterior domain Ω such that
u(x) → 0 as |x| → ∞. Under the condition (B2) it is required to show that u has compact
support in Ω. We can choose R0 > R so large that u(x) < γ in the set Ω0 = {|x| ≥ R0}.
Then, to simplify the notation one may consider the domain Ω0 to be the given domain Ω.

It is now enough to show that u ≤ v as in the proof of Theorem 1.2, where v is the
comparison function above, satisfying (8.16). For this purpose it is not possible to resort
directly to Lemma 8.2, since Dv ≡ 0 for large |x|, while Du is unrestricted as to its null
set. Accordingly we use an indirect argument.

Define z = v− u in Ω. Clearly |z| ≤ γ. We claim that z ≥ 0. If this is not the case, then

ε = − inf
Ω

z < 0, 0 < ε ≤ γ,

and we shall reach a contradiction. Note first that z = γ − u > 0 when |x| = R, and that
z(x) → 0 as |x| → ∞; hence the infimum of z must be attained at some (interior) point x0
in Ω.

Define
Ω̂ = {R < |x| < R1}, Ω1 = {|x| > R1}.

Then Ω = Ω̂ ∪ ∂Ω1 ∪ Ω1, so exactly the following three cases can occur:
(1) The infimum of z is attained in Ω1.
(2) The infimum of z is not attained in Ω1, but is reached at a point on ∂Ω1.
(3) The infimum of z is not attained in Ω1, but is reached in Ω̂.

In Case 1, let the infimum be attained at x0 in Ω1. For x in Ω1, define u(x) = −u(x)+ ε.
Then since v ≡ 0 in Ω1, we see that u ≡ z + ε ≥ 0 has a zero minimum at x0. Moreover,
u(x) is such that 0 ≤ u ≡ −u + ε ≤ ε, while also by (8.10)

Di{aij(x,−u + ε)A(|Du|)Dju}+ B(x,−u + ε,−Du) ≤ 0, u ≥ 0,

in Ω0. Subtracting the expression g(−u+ ε) from both sides of the previous line, then gives

Di{aij(x,−u + ε)A(|Du|)Dju} − B̃(x, u,Du) ≤ −g(−u + ε)(8.17)

where
B̃(x, u, ξ) ≡ −B(x,−u + ε,−ξ) + g(−u + ε) ≤ κΦ(|ξ|),

using the given condition (B2) at the second step. That is, B̃(x, u, ξ) satisfies (B1) with
f ≡ 0. Using the fact that g(u) ≥ 0 for 0 ≤ u ≤ γ < δ, we see that g(−u + ε) ≥ 0, so that
finally from (8.17) there follows

Di{aij(x,−u + ε)A(|Du|)Dju} − B̃(x, u,Du) ≤ 0

in Ω0 (and hence in Ω1). Hence by the strong maximum principle (Theorem 8.1) applied to
the domain Ω1 we obtain u ≡ 0. Thus u ≡ ε > 0 in Ω1, which is impossible since u(x) → 0
as |x| → ∞. That is, Case 1 cannot occur.

In Case 2, let the infimum of z be reached at x0 on ∂Ω1. In this case, obviously u > 0
in Ω1 while u = 0 at x0 (we can of course consider u as a C1 function on Ω1). Then, since
Ω1 clearly satisfies an interior sphere condition at x0, the boundary lemma (Corollary 8.4)
gives ∂u/∂n < 0 at x0. But this is also impossible, because Du ≡ Dz = 0 at x0.

In Case 3, necessarily v − u = z > −ε on the boundary of Ω1, while as noted earlier
v − u > 0 when |x| = R0. Thus v − u ≥ −a, a ∈ [0, ε), on the boundary of Ω̂, while of
course u < δ and Dv 6= 0 in Ω̂. This corresponds in essence to Lemma 8.2 for Ω = Ω̂, with
the roles of u and v interchanged. We can thus apply Theorem 8.1, of course for the case
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M = −a ≤ 0, the conclusion being that v − u ≥ M = −a > −ε in Ω̂. But this contradicts
the condition of Case 3 that z = v − u attains its infimum −ε in Ω̂.

We have thus shown that all three cases lead to a contradiction. Consequently z ≥ 0 in
Ω, that is v ≥ u. In turn, u ≡ 0 for |x| > R1, which completes the proof of the theorem. �

Corollary 8.6. Assume that both (B1) and (B2) are satisfied and that there exists c > 0
such that g(u) ≥ cf(u) > 0 for u > 0. Then the compact support principle holds for (8.10)
if and only if (1.7) holds.

We close the section with a counterexample showing the importance of the lower bound
conditions (B1) and (B2). Consider the inequality

∆pu + |Du|q1 − uq2 ≥ 0, p > 1, q1, q2 > 0.(8.18)

Clearly, conditions (8.13), (B1) and (B2) are satisfied if and only if q1 ≥ p − 1 and q2 <
p − 1. The compact support principle then holds for (8.18). On the other hand, for any
q1 ∈ (0, p− 1) we can take q1 < q2 < p− 1. One easily checks that (8.18) then has positive
solutions u(x) = const. |x|−l on ΩR = {x ∈ Rn : |x| > R} for l and R large. Hence the
compact support principle fails even though condition (1.6), or equally (8.13), is fulfilled!

9. Riemannian weighted norms

Let M be an n-dimensional Riemannian manifold of class C1, with contravariant metric
tensor [gij ] continuous in local coordinates x = (x1, . . . , xn). Let u be a real–valued C1

function defined on some open connected submanifold Ω of M. The Riemannian norm of
the gradient vector ∇u on Ω is then defined as the non–negative continuous function on Ω
given in local coordinates by

|∇u|g =
√

gijDiuDju, Diu =
∂u
∂xi .

Consider the variational integral

I[u] =
∫

Ω
{G(|∇u|g) + F (u)}dM.

The corresponding Euler–Lagrange equation is then

divg{A(|∇u|g)∇u} − f(u) = 0,(9.1)

where divg is the Riemannian divergence operator and A(ρ) = G′(ρ)/ρ, ρ > 0, as in the
introduction, see (1.5). More explicitly, in local coordinates x = (x1, . . . , xn) in Ω, one
has dM =

√
gdx, where g = 1/det[gij ]. Then a direct calculation of the Euler–Lagrange

equation yields
1

√

g(x)
Di

(√

g(x)gij(x)A(|∇u|g)Dju
)

− f(u) = 0,(9.2)

that is, exactly (9.1). When A ≡ 1 the differential operator in (9.2) reduces just to the
manifold Laplacian, see [43], page 232.

A specific example is given by the variational integral
∫

Ω

{

1
p
|∇u|pg + F (u)

}

dM, p > 1, where dM =
√

gdx on Ω,

introduced by Mossino ([24], page 40), though without the volume factor
√

g. Here of course
A(ρ) = ρp−2, p > 1. Other examples are given also in [25].

Obviously (9.2) is the special case of (1.13) when

aij(x, u) =
√

g(x)gij(x), B(x, u, ξ) =
√

g(x)f(u).

With this motivation in hand, we turn to the strong maximum principle for (1.13). As at
the beginning of the section, we assume that (A1)′ and (A2)′ are valid, and additionally
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that the tensors [gij ] = [gij(x, u)] and [aij ] = [aij(x, u)] are continuously differentiable,
symmetric and positive definite in Ω × R+

0 . In the context of (1.13) the domain Ω is now
of course simply a connected open subset of Rn.

The inequality (1.13) is more difficult to treat than (8.2), in that there are two different
sets of hypotheses under which the strong maximum principle can be obtained. In the
first, some mild conditions on the operator A = A(ρ) are required, satisfied in particular
by both the p–Laplacian operator and the mean curvature operator. In the second case, a
modification of condition (B1) is needed, together with stronger conditions on the metric
tensor [gij ]. It is convenient to consider the two cases separately.

First, we introduce the additional structure hypotheses:

(A3) (i) |A′(ρ)|ρ2 ≤ cΦ(ρ) for some constant c ≥ 0 and for all ρ ∈ (0, 1], and

(ii) for all σ0 ∈ (0, 1) there exists a value ν = ν(σ0) such that

Φ′(ρ) ≤ νΦ′(σρ)

for all σ ∈ (σ0, 1] and ρ ∈ (0, 1).

Note that if Φ is concave, condition (A3)–(ii) is always satisfied with ν = 1; this is the
case for example for the p–Laplacian operator when 1 < p ≤ 2, and for the mean curvature
operator. On the other hand, for Φ(ρ) = ρp−1, p > 2, we get ν(σ0) = σ2−p

0 . It follows that
(A3)–(ii) is satisfied for the p–Laplacian with ν = max{1, σ2−p

0 }.
Also (A3)–(i) is satisfied for the p–Laplacian with c = |p− 2| and for the mean curvature

operator with c = 1, etc.

Theorem 9.1. Let conditions (A1)′, (A2)′, (A3) and (B1) hold. Then the strong maximum
principle is valid for inequality (1.13) provided that f(s) ≡ 0 for s ∈ [0, µ), µ > 0, or
f(s) > 0 for s ∈ (0, δ) and (1.6) is satisfied.

Theorem 9.2. Let conditions (A1)′ and (A2)′ hold, let gij = gij(x) be independent of u and
of class C2(Ω), and assume (B1) applies with Φ(|ξ|) replaced by Φ(|ξ|g). Then the strong
maximum principle is valid for inequality (1.13) provided that f(s) ≡ 0 for s ∈ [0, µ), µ > 0,
or f(s) > 0 for s ∈ (0, δ) and (1.6) is satisfied.

Proof of Theorem 9.1. This closely follows the proof of Theorem 8.1, though with an
additional term appearing in (8.7) due to the presence of the metric [gij ], and with a slight
(but not trivial) difference in the definition of the comparison function v = v(r).

To begin with, we define the positive definite matrix ĝij(x) = gij(x, u(x)), this of course
being of class C1 in the annular domain ER, see the proof of Theorem 8.1. Let θ2 and Θ2

be respectively the least and greatest eigenvalues of the positive definite matrix [ĝij ] in ER,
and write

` = `(x) = |Dr|ĝ =
√

ĝij(x)xixj/r2.

Then in ER,

θ ≤ ` ≤ Θ, (Θ ≥ 1 without loss of generality).(9.3)

Following the proof of Theorem 8.1, the estimate (8.5) continues to hold, and similarly,
after a short calculation,

|ξkDk`| ≤ β|ξ|/`r(9.4)

for some constant β ≥ 0, with β = 0 if gij = δij . Finally it is convenient to define
ν̄ = ν(θ/Θ), where ν is the function given in (A3)–(ii).

Now let v(x) = w(t), t = (R−r)/Θ, r = |x|, where w is the unique solution of (4.1) given
by Proposition 4.1 when q(t) = (R−Θt)k, T = R/2Θ, and f is replaced by (ν̄Θ2/λ)f . The
constant k will be determined later.
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Of course, Proposition 4.4 applies to the solution w in view of Lemma 3.2 and (1.6).
Therefore Dv(x) = −w′x/Θr 6= 0. Also, by restricting the boundary value w = m at
T = R/2Θ to be sufficiently small, one can maintain ‖w′‖∞ ≤ 1 and so

0 < |Dv| ≤ 1 in ER.(9.5)

We can now turn to the important, but unfortunately somewhat complicated, calculation,
applying for x ∈ ER,

Di{âij(x)A(|Dv|ĝ)Djv} − κΦ(|Dv|ĝ)− f(v)

=
1

Θ2 âij(x)
xj

r
Φ′(`w′/Θ)w′′ · xi

r
−A′(`w′/Θ)|w′|2Di`

− 1
Θ

Di

{

âij(x)
xj

r

}

A(`w′/Θ)w′ − κΦ(`w′/Θ)− f(v)

≥ 1
Θ2 âij(x)

xixj

r2 Φ′(`w′/Θ)w′′ − cβ
`3r

Φ(`w′/Θ)− αR + (n− 1)Λ
`r

Φ(`w′/Θ)

− κΦ(`w′/Θ)− f(w) (by (A3)–(i), (8.4) and (9.3))

≥ λ
ν̄Θ2 Φ′(w′)w′′ − 1

r

{

cβ
θ3 +

αR + (n− 1)Λ
θ

+ Rκ
}

Φ(w′)− f(w)

(by (9.3), (A3)–(ii) and Φ′ > 0)

=
λ

ν̄Θ2

{

[Φ(w′)]′ − k̄
r
− ν̄Θ2

λ
f(w)

}

(defining k̄)

=
λ

ν̄Θ2

{

1
q(t)

[q(t)Φ(w′)]′ − ν̄Θ2

λ
f(w)

}

= 0,

where we take k = k̄/Θ.6

The rest of the proof is essentially the same as for Theorem 8.1, with the single exception
that now the matrix bkj(ξ) = bkj(x, ξ) in the proof of the analogue of Lemma 8.2 is given
by

bkj(ξ) = A(`|ξ|)δij + `
A′(`|ξ|)
|ξ|

ξkξj .

The eigenvalues of [bkj ] are A(`|ξ|) and Φ′(`|ξ|) so from (9.3) it is evident that [bkj ] is
positive definite for ξ 6= 0 and all x ∈ ER. �

Proof of Theorem 9.2. The idea of the proof is to replace the ball BR tangent to the support
of u by a small geodesic ball {x ∈ Ω : s(x) ≤ S} centered at x0 and tangent to the singular
set where u = 0, Du = 0; here s(x) denotes the geodesic distance (with respect to the
metric induced by the matrix [gij ]) from the given center x0 to nearby points x ∈ Ω. The
existence of such a tangent ball can be shown exactly as in Hopf’s original proof, at least
provided that |Ds| is equally bounded above and bounded away from zero.

To show this fact, we observe by Gauss’ lemma (see [43], page 235) that

|Ds(x)|2g = gij(x)Dis(x)Djs(x) = 1, x 6= x0.(9.6)

Thus, recalling that θ2 and Θ2 are the least and greatest eigenvalues of [gij ], we get

Θ−1 ≤ |Ds| ≤ θ−1,

as required.
We can now proceed as in the proof of Theorem 9.1, with ER replaced by the geodesic

annular set GS = {x ∈ Ω : S/2 ≤ s(x) ≤ S} and with

v(x) = w(t), t = S − s, T = S/2,

Dv = −w′Ds, |Dv|g = w′

6If gij = δij , then ` = 1, β = 0, θ = Θ = 1, ν̄ = 1 and the calculation reduces exactly to (8.6), without
the intervention of condition (A3).
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by (9.6). The principal calculation, for x ∈ GS , is the following:

Di{âij(x)A(|Dv|g)Djv} − κΦ(|Dv|g)− f(v)

= −Di{âij(x)DjsA(w′)w′} − κΦ(w′)− f(w)

= âij(x)DisDjs[Φ(w′)]′ −Di(âij(x)Dis)Φ(w′)− κΦ(w′)− f(w)

≥ λ
Θ2 [Φ′(w′)]′ −

(α
θ

+ Λ‖D2s‖
)

Φ(w′)− κΦ(w′)− f(w)

≥ λ
Θ2 [Φ(w′)]′ − k̄

s
Φ(w′)− f(w),

(9.7)

where k̄ is an appropriate constant. That such a constant exists depends on knowing that
s ∈ C2(GS), which is a consequence of the assumption that gij is of class C2, see [43],
Appendix II.1, and [33]. [Here it is essential to have gij independent of u, for otherwise
the constructed matrix [ĝij ] would be only of class C1, however smooth the metric might
be; thus in turn the corresponding geodesic distance ŝ(x) would be only of class C1 away
from x0. Of course, due to the singularity at the center x0 the gradient Ds naturally is
not continuous at x0, while D2s is unbounded of order 1/s as x approaches x0 (always
assuming that gij is of class C2). These comments are reflected in the trivial Rn calculation
that Dr = x/r is not continuous at the singularity x0 = 0, though it is bounded, and that
the Hessian matrix D2r = r−1[δij − xixj/r2]ij .

The existence of the constant k̄ being shown, one can choose w = w(t) so that the right
side of (9.7) vanishes, and the rest of the proof follows as before. The fact that Φ(|ξ|g)
replaces Φ(|ξ|) in condition (B1) causes no difficulty in the application of Theorems 8.1 and
10.1, since for |ξ| ≤ |η| there results

Φ(|η|g)− Φ(|ξ|g) ≤ (Θ2/θ)Φ′(Θ|η|) · |η − ξ|,

that is Φ(|ξ|g), as well as Φ(|ξ|), is Lipschitz continuous in ξ. �

The strong maximum principle for the Riemannian equation (9.1), or for the correspond-
ing inequality

divg{A(|∇u|g)∇u} − f(u) ≤ 0 in Ω,(9.8)

can be treated more simply than for the case of inequality (1.13), and under slightly lighter
hypotheses. The result is as follows.

Theorem 9.3. Let conditions (A1), (A2) and (F2) hold. Assume that the Riemannian
manifold M is of class C2. Then the strong maximum principle is valid for inequality (9.8)
provided that f(s) ≡ 0 for s ∈ [0, µ), µ > 0, or f(s) > 0 for s ∈ (0, δ) and (1.6) is satisfied.

Proof. We begin as in the proof of Theorem 9.2, with the exception that (9.7) now becomes
more simply, for x ∈ GS ,

1
√

g(x)
Di{

√

g(x)gij(x)A(|Dv|g)Djv} − f(v)

= − 1
√

g(x)
Di{

√

g(x)gij(x)DjsA(w′)w′} − f(w)

= [Φ(w′)]′ −∆sΦ(w′)− f(w) ≥ [Φ(w′)]′ − k̄
s
Φ(w′)− f(w).

(9.9)

The remaining part of the proof involves the weak comparison theorem. In the present case
this can be done with the help of Theorem 10.5 rather than the more difficult Theorem 10.1.
To this end, we have to check (10.10) when Â(x, ξ) =

√

g(x)gij(x)A(|ξ|g)ξ, that is, in
Riemannian notation,

√

g(x)〈A(|η|g)η −A(|ξ|g)ξ, η − ξ〉M ≥
√

g(x)
(

Φ(|η|g)− Φ(|ξ|g)
)

·
(

|η|g − |ξ|g
)
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since 〈ξ, η〉M ≤ |ξ|g|η|g, and (10.10) now follows because Φ is strictly increasing by (A2).
�

In [25] a version of the strong maximum principle at infinity, the so–called Omori–Yau
principle, has recently been given for singular elliptic inequalities including the p–Laplacian
case as well as the mean curvature operator, and for smooth, connected, non–compact,
complete Riemannian manifolds M.

10. Comparison and uniqueness theorems for singular divergence form
operators

10.1. Comparison results

Throughout the section we consider the pair of differential inequalities

div{Â(x, u, Du)} − B̂(x, u, Du) ≤ 0, u ≥ 0,(10.1)

div{Â(x, v, Dv)} − B̂(x, v, Dv) ≥ 0, v ≥ 0,(10.2)

in a bounded domain Ω ⊂ Rn. Let the vector function

Â(x, z, ξ) : Ω× R× Rn → Rn

be continuous in Ω×R×Rn and continuously differentiable with respect to z and ξ for all
z and for ξ 6= 0. Also let

B̂(x, z, ξ) : Ω× R× Rn → R
be continuous in Ω × R × Rn and continuously differentiable with respect to ξ for |ξ| > 0
in Rn. Suppose moreover throughout the section that Â is elliptic in the sense that the
matrix [Dξj Â

i(x, z, ξ)] is positive definite for x ∈ Ω and ξ 6= 0 in Rn. Finally assume that
B̂(x, z, ξ) is non–decreasing in the variable z for x ∈ Ω and |ξ| ≤ b.

Then the following comparison principle holds.
Theorem 10.1. (Comparison principle). Let u and v be respective solutions of (10.1)
and (10.2) in Ω. Suppose that u and v are continuous in Ω, with |Du|+ |Dv| > 0 in Ω, and
either |Du| < b or |Dv| < b. Assume finally u ≥ v on ∂Ω.

If Â is independent of the variable z, then u ≥ v in Ω.
More generally if the boundary condition is relaxed to u ≥ v − M on ∂Ω, where M is

constant, then u ≥ v −M in Ω.
This is essentially Theorem 10.7 (i) of [18] with the exception that the functions Â and

B̂ are allowed to be singular at ξ = 0, this being compensated by the additional condition
|Du|+ |Dv| > 0 in Ω. We have written Â, B̂ here, rather than A, B as in [18], in order to
avoid confusion with earlier notation in the paper.

If Ω is unbounded, the boundary condition is understood to include the limit relation

lim inf {u(x)− v(x)} ≥ −M as |x| → ∞.

Before giving the proof it is convenient to state the following
Lemma 10.2. Let Ω̂ be a compact subset of Ω, and ξ, η vectors in Rn satisfying

|ξ|, |η| ≤ b, |tξ + (1− t)η| ≥ d

for some positive constants b and d, with d ≤ b, and for all t ∈ (0, 1). Also suppose |z| ≤ `.
Then there exist constants ν, ν∗ depending only on b, d, ` and Ω̂ such that

{Â(x, z, ξ)− Â(x, z, η)} · (ξ − η) ≥ ν|ξ − η|2(10.3)

and

|B̂(x, z, ξ)− B̂(x, z, η)| ≤ ν∗|ξ − η|.(10.4)



40 P. PUCCI AND J. SERRIN

Proof. By the integral mean value theorem,

Â(x, z, ξ)− Â(x, z, η) =
∫ 1

0
DξjÂ(x, z, tξ + (1− t)η)(ξj − ηj)dt.

But the matrix [DjÂi(x, z, ζ)] is uniformly positive definite for x in Ω̂, |z| ≤ ` and d ≤ |ζ| ≤
b, and the first conclusion then follows at once.

Similarly

B̂(x, z, ξ)− B̂(x, z, η) =
∫ 1

0
Dξj B̂(x, z, tξ + (1− t)η)(ξj − ηj)dt.

Here Dξj B̂(x, z, ζ) is uniformly bounded for x in Ω̂, |z| ≤ ` and d ≤ |ζ| ≤ b, and the second
inequality is proved. �

It may be remarked that in the special case of the p–Laplacian operator, that is, when
Â(ξ) = |ξ|p−2ξ, we can take ν = dp−2 when p ≥ 2, and ν∗ = (p− 1)bp−2 when p < 2.

Proof of Theorem 10.1. It is enough to treat M = 0, since the case for arbitrary values of
M reduces to M = 0 by the substitution v = v −M .

Now suppose for contradiction that the conclusion is false. Put w(x) = u(x) − v(x),
whence

ε = − inf
x∈Ω

w(x) > 0.

Then for ε ∈ (ε/2, ε) the function

wε = min{w + ε, 0}
is non–vanishing exactly in the set

Σ = Σε = {x ∈ Ω : wε(x) < 0}.
Since w + ε > 0 on ∂Ω it is evident that Σ is pre–compact in Ω.

We assert that if ε is suitably close to ε then

|tDu + (1− t)Dv| ≥ d, |Du|, |Dv| ≤ b,(10.5)

in Σ, where d > 0 is a constant (independent of ε) such that |Du| + |Dv| ≥ 4d in the
pre–compact set Σa. To see this, observe first that Du − Dv = Dw = 0 on the closed
subset E = {x ∈ Ω : w(x) = −ε} of Σ. Moreover, distance(E, ∂Σ) → 0 as ε → ε. Hence
by continuity, |Du−Dv| < d in Σ provided ε ( > ε/2) is suitably near ε. In particular, for
such values of ε we find (since surely max{|Du|, |Dv|} ≥ 2d in Σ)

|tDu + (1− t)Dv| ≥ max{|Du|, |Dv|} − |Du−Dv| ≥ d in Σ,

which is the first part of (10.5).
For the second part, consider (without loss of generality) the case where |Dv| < b in Ω.

Define b = supx∈Σε/2
|Dv(x)|. Then b < b, and if we choose ε even nearer to ε, if necessary,

then also |Du−Dv| < b− b in Σ. But then |Du| ≤ |Dv|+ |Du−Dv| ≤ b in Σ, as required.
Continuing now as in the proof of Theorem 5.4, and using the non–positive test function

wε, we have
∫

Ω
{Â(x,Du)− Â(x,Dv)}Dwε ≤

∫

Σ
{B̂(x, v, Dv)− B̂(x, u, Du)}wε

≤
∫

Σ
{B̂(x, u, Dv)− B̂(x, u, Du)}wε,

(10.6)

where in the last step of (10.6) we have used the facts that wε ≤ 0 and u ≤ v in Σ, and that
B̂ is non–decreasing in the variable z. Then, with the help of Lemma 10.2, (10.6) implies
that

ν
∫

Σ
|Dwε|2 ≤ ν∗

∫

Σ
|Dwε| · |wε|.(10.7)
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Let Γ = Γε = {ε− ε < wε < 0}. Then Dwε = 0 on Σ \Γ = E, so the integrals in (10.7) can
equally be taken over the set Γ.

Applying the Cauchy–Schwarz inequality to the right side of (10.7) yields

(ν∗/ν)2
∫

Γ
|wε|2 ≥

∫

Γ
|Dwε|2.(10.8)

From Poincaré’s inequality (cf. (7.44) on page 164 of [18]) we obtain

ω−1
n |Γ|1/n ||Dwε||Γ,2 = ω−1

n |Γ|1/n ||Dwε||Σ,2 ≥ ||wε||Σ,2 ≥ ||wε||Γ,2.

Hence by (10.8) there results

|Γ| ≥ ωn(ν/ν∗)n.(10.9)

On the other hand, Γ → ∅ as ε → ε, a contradiction to (10.9). This completes the proof. �

In the following two theorems, the stated conditions on Du and Dv in Theorem 10.1 are
removed. Essentially similar results were given earlier by Damascelli [9]; see also [10].

Theorem 10.3. (Comparison principle). Suppose that Â is independent of u, and that
the matrix [∂Âi/∂ξj ] is uniformly positive definite when 0 < |ξ| ≤ Const., u is bounded
and x is in any compact subset of Ω. Assume additionally that B̂ is uniformly Lipschitz
continuous with respect to ξ on compact subsets of its variables and is non–decreasing in
the variable u.

If u ≥ v −M on ∂Ω, where M is constant, then u ≥ v −M in Ω.

To prove Theorem 10.3 it is enough to observe that the conclusions of Lemma 10.2 hold
without the restriction |tξ + (1− t)η| ≥ d. In fact if ξ = η = 0 then (10.3) and (10.4) are
trivially true, while otherwise certainly |tξ + (1 − t)η| > 0, in which case the conclusions
follows from the hypothesis of uniformly positive definiteness and the Lipschitz continuity
of B̂.

This being shown, the proof of Theorem 10.1 then carries over unchanged, without the
intervention of (10.5).

The special case of the p–Laplacian operator is of particular importance. This is given
in the following

Corollary 10.4. Consider the inequalities

∆pu− B̂(x, u, Du) ≤ 0 in Ω,

∆pv − B̂(x, v,Dv) ≥ 0 in Ω,

where p ≤ 2, and B̂ = B̂(x, z, ξ) is uniformly Lipschitz continuous in ξ on compact subsets
of its variables (and of course non–decreasing in the variable z). If u ≥ v−M on ∂Ω, where
M is constant, then u ≥ v −M in Ω.

Remark. If in Theorems 10.1 and 10.3 one adds the hypothesis that u ≥ 0, v < δ, then
the monotonicity of B̂ is needed only in the interval 0 ≤ z < δ − M ; see the proof of
Theorem 5.4.

Theorem 10.5. (Comparison principle). Let u and v be respective solutions of (10.1)
and (10.2) in Ω. Suppose that u and v are continuous in Ω, that Â is independent of z and
B̂ is independent of ξ. Assume moreover that Â is monotone in the variable ξ (but not
necessarily differentiable), i.e.

{Â(x, ξ)− Â(x, η)} · (ξ − η) > 0, when ξ 6= η.(10.10)

If u ≥ v on ∂Ω, then u ≥ v in Ω.
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This follows at once from (10.10), exactly as in the proof of Theorem 5.4.
Strong comparison theorems, under alternative hypotheses, have been obtained by Tolks-

dorf [38] and by Cuesta and Takác̆ [8].

There is a final comparison theorem which avoids the conditions on Du and Dv in
Theorem 10.1, but at the expense of a simpler boundary condition.

Theorem 10.6. Let u be a solution of the inequality

Di{aij(x, u)A(|Du|)Dju} −B(x, u, Du) ≤ 0 in Ω.

Suppose that (8.1) is satisfied and that

B(x, z, ξ) ≤ κΦ(|ξ|)(10.11)

for x ∈ Ω, z < 0, and |ξ| ≤ 1.
If u ≥ 0 on ∂Ω then u ≥ 0 in Ω.

Proof. Assume for contradiction that u has a negative minimum M at some point x0 in Ω.
Put w = u −M . Then w ≥ 0 in Ω, while w(x0) = 0. Using (10.11) one sees that w is a
solution of the inequality

Di{aij(x, w + M)A(|Dw|)Djw} − κΦ(|Dw|) ≤ 0

in some neighborhood N of x0 (where 0 ≤ w < |M |). Hence by Theorem 8.1 we find
w ≡ 0 in N , and then by chaining also w ≡ 0 in Ω, which is impossible by the boundary
condition. �

Theorem 10.6 is false without condition (10.11), as follows from the example, equation
(1.10), in the introduction. Indeed, essentially as noted there, this equation has the solution
u(x) = C(|x|k − 1) on the unit ball, which vanishes on the boundary, and at the same time
is negative in the interior.

While we have not found a proof, we conjecture that the full result of Theorem 10.1
should hold without the stated conditions on Du and Dv provided that B̂ obeys (B1).

10.2. Uniqueness of the Dirichlet problem

The structure built up in the earlier parts of this section, and also in previous sections,
allows one to present a number of uniqueness theorems for the Dirichlet problem

divÂ(x, u,Du)− B̂(x, u, Du) = 0 in Ω,

u(x) = ϕ(x) on ∂Ω,
(10.12)

where ϕ ∈ C(∂Ω).

Theorem 10.7. Suppose Â is independent of u and B̂ of Du, and that (10.10) holds. Then
problem (10.12) can have at most one solution.

This is an immediate consequence of Theorem 10.5. The special case when Â(x, u, ξ) =
A(|ξ|)ξ (and A satisfies conditions (A1) and (A2) in the introduction, for example the case
of the p–Laplacian) also follows directly from Theorem 5.4.

Theorem 10.8. Suppose that Â is independent of u, and that the matrix [∂Âi/∂ξj ] is
uniformly positive definite when 0 < |ξ| ≤ Const. and x is in any compact subset of Ω.
Assume additionally that B̂ is uniformly Lipschitz continuous with respect to ξ on compact
subsets of its variables (and of course non–decreasing in the variable u).

Then the problem (10.12) can have at most one solution.

The special case of the p–Laplacian operator is of particular importance. This is given
in the following
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Corollary 10.9. The Dirichlet problem

∆pu− B̂(x, u, Du) = 0 in Ω,

u(x) = ϕ(x) on ∂Ω,

where p ≤ 2 and B̂ = B̂(x, z, ξ) is uniformly Lipschitz continuous in ξ on compact subsets
of its variables, can have at most one solution.

When the boundary data takes the canonical form u = 0 on ∂Ω, then the condition
of uniform positive definiteness in the previous theorem can be dropped. The result is as
follows.
Theorem 10.10. Consider the equation

Di{aij(x, u)A(|Du|)Dju} −B(x, u, Du) = 0 in Ω,

with (8.1) satisfied. Assume also

[sign z] ·B(x, z, ξ) ≥ −κΦ(|ξ|)(10.13)

for x ∈ Ω, z ∈ R and |ξ| ≤ 1. Then the Dirichlet problem u = 0 on ∂Ω has the unique
solution u ≡ 0.

This follows immediately from Theorem 10.6, once it is shown that u ≡ 0 is a solution.
But this is a consequence of the fact that B(x, 0,0) = 0. Indeed by (10.13) one has

[sign z] ·B(x, z,0) ≥ 0

so that B(x, z,0) changes sign as z passes through zero, which by continuity gives B(x, 0,0) =
0.

11. p–regular equations

For a large set of equations displaying p–homogeneity, p > 1, including in particular
equations involving the p–Laplacian ∆p, there is an elegant Strong Maximum Principle
which corresponds closely to the case of regular equations discussed in the introduction.

In particular, we consider the singular differential inequality

divÂ(x, u, Du)− B̂(x, u, Du) ≤ 0 in Ω, u ≥ 0,(11.1)

where the (measurable) functions Â and B̂ have the following homogeneity and ellipticity
properties for all x ∈ D, u ∈ R+

0 and ξ ∈ Rn

Â(x, u, ξ) · ξ ≥ a1|ξ|p − a2up

|Â(x, u, ξ)| ≤ a3|ξ|p−1 + a4up−1

B̂(x, u, ξ) ≤ b1|ξ|p−1 + b2up−1

(11.2)

with a1, a3 > 0; a2, a4, b1, b2 ≥ 0 (see [35], where these conditions apparently appear first).
Trudinger [39], closely using the ideas of [35], has proved under these conditions the

following beautiful Harnack inequality for continuous (non–negative) solutions u of (11.1)
which are in the Sobolev space W 1,p(Ω):

For any ball BR, such that 0 < R ≤ 1 and B3R ⊂ Ω, there holds

||u||B2R,γ ≤ C|R|n/γ min
BR

u(x),(11.3)

where C depends only (p, n, γ, a1, a2, a3, a4, b1, b2) and γ ∈ (0, (p − 1)n/(n − p)) (or (0,∞)
if p ≥ n).

This immediately implies the following Strong Maximum Principle.7

Theorem 11.1. (Strong maximum principle). Let u be a (non–negative) solution of
(11.1) in Ω, as defined above. Then either u ≡ 0 in Ω or u > 0 in Ω.

7The special case a2 = a4 = 0 and B̂ = 0 was noted by Granlund [19].
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Proof. Indeed suppose that u = 0 at some point x0 in Ω. Let B3R be a ball centered at x0,
with R so small that B3R is in Ω. Then minBR u(x) = 0, so in turn ||u||B2R,γ = 0 by (11.3).

That is, u = 0 in B2R. Chaining then gives the conclusion u ≡ 0 in Ω, proving the
theorem. �

Remark. If we consider classical distribution solutions of (11.1), rather than the weaker
class above, then conditions (11.2) need only apply for small u ≥ 0, say u < δ, and for
|ξ| ≤ 1, say.

To prove Theorem 11.1 for this case, we first modify Â and B̂ for values u ≥ δ and
|ξ| > 1, so that the modified functions remain measurable but now also satisfy (11.2) for
the complete set of variables. Then, corresponding to any classical (non–negative) solution
of (11.1) for which u(x0) = 0, there is some neighborhood N of x0 where u < δ and |ξ| ≤ 1.
Therefore u satisfies the modified equation in N , for which the full conditions (11.2) hold.
Thus u ≡ 0 in N by Theorem 11.1, and then u ≡ 0 in Ω, by chaining.

Theorem 11.1 is obviously broad and powerful. On the other hand, it has some drawbacks
in comparison with Theorems 1.1 and 1.2 (or Theorem 8.1 and 8.5). Specifically it applies
only to operators A(ρ) which obey

Const. ρp−1 ≤ Φ(ρ) ≤ Const. ρp−1(11.4)

for some positive constants, and similarly it requires that the function f(u) in (1.1), or in
(B1), must satisfy f(u) ≤ up−1 for small u > 0. Finally, of course, it does not lend itself to
the precise necessary and sufficient condition (1.6), even in case A obeys (11.4)

There is a corresponding comparison theorem of interest, valid under the stronger con-
ditions following:

Â(x, u, ξ) · ξ ≥ a1|ξ|p, B̂(x, u, ξ) ≤ b1|ξ|p−1,(11.5)

where a1 > 0 and b1 ≥ 0.
Theorem 11.2. (Comparison principle). Let u be a solution of the inequality (11.1),
where Â and B̂ satisfy (11.5) for x ∈ Ω and u < M .

If u ≥ M on ∂Ω, then u ≥ M in Ω.
Gilbarg and Trudinger give a related result ([18], Theorem 10.9), but with a more difficult

proof.

Proof. Suppose for contradiction that the result fails. We then follow the proof of Theo-
rem 10.1, with w(x) = u(x)−M , however without the intervention of (10.5). Corresponding
to (10.6), one finds, using the non–positive test function wε,

∫

Ω
Â(x, u, Du) ·Dwε ≤ −

∫

Σ
B̂(x, u,Du)wε.(11.6)

Then, with the help of (11.5) and the fact that Du = Dwε on Σ, the inequality (11.6)
implies that

a1

∫

Σ
|Dwε|p ≤ b1

∫

Σ
|Dwε|p−1 · |wε|.(11.7)

Let Γ = Γε = {ε− ε < wε < 0}. Then Dwε = 0 on Σ \Γ = E, so the integrals in (10.7) can
equally be taken over the set Γ.

Applying Hőlder’s inequality to the right side of (11.7) yields, cf. (10.8),

b1||wε||Γ,p ≥ a1||Dwε||Γ,p.(11.8)

From Poincaré’s inequality (7.44) of [18], we obtain

ω−1
n |Γ|1/n ||Dwε||Γ,p = ω−1

n |Γ|1/n ||Dwε||Σ,p ≥ ||wε||Σ,2p ≥ ||wε||Γ,2p.

Hence by (11.8) there results

|Γ| ≥ ωn(a1/b1)n.(11.9)
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On the other hand, Γ → ∅ as ε → ε, a contradiction to (11.9). This completes the proof. �

12. Special cases

12.1. The linear case

Consider the linear inequality

Di{aij(x)Dju}+ bi(x)Diu + c(x)u ≤ 0, u ≥ 0,(12.1)

for x ∈ Ω, where the matrix [aij ] is continuously differentiable and satisfies (8.1), bi, c ∈
C(Ω) for all i = 1, . . . , n. This is the special case of (8.2) where A(ρ) ≡ 1, B(x, u, ξ) =
−bi(x)ξi − c(x)u. Here we can apply the result of Theorem 8.1, assuming also that bi(x)
and c(x) are locally bounded. By slightly shrinking the domain Ω we can then suppose that

κ = max
i

sup
Ω
|bi(x)| < ∞, c = − inf

Ω
{c(x), 0} < ∞,

and moreover define f(u) = cu. Then Φ(ρ) = ρ, H−1(ρ) =
√

2ρ and F (u) = cu2/2, so
that (B1) and (1.6) hold as required. This gives the strong maximum principle for (12.1),
closely related to the classical Theorem 2.2 of E. Hopf. Indeed, assuming as above that
aij is continuously differentiable, then the strong maximum principle for C2 solutions of
(12.1) is an immediate consequence of Theorem 2.2, while conversely the strong maximum
principle for C1 distribution solutions of (2.1) follows at once from Theorem 8.1.

These comments moreover lead us to expect that the proof of Theorem 8.1 can be simpli-
fied for the special linear case. In fact, the principal inequality (8.6) in the proof of Theorem
8.1 suggests that the required comparison function v for the Hopf proof can be obtained for
the linear case by exhibiting an explicit solution of the inequality

{|v′|}′ + k
r
|v′|+ cv

λ
≤ 0.

(since Φ(ρ) = ρ in the present linear case). A natural choice for v is

v(r) = α

[

(

R
r

)ϑ

− 1

]

,
R
2
≤ r ≤ R,(12.2)

where ϑ and R are to be determined. Then v′(r) =
αϑ
R

(

R
r

)ϑ+1

and so after a short

calculation

|v′|′ + k
r
|v′|+ cv

λ
= αϑ

(

R
r

)ϑ {

k − (ϑ + 1)
r2

}

+
cv
λ

≤ αϑ
(

R
r

)ϑ {

k − (ϑ + 1)
r2 +

c
λϑ

}

.

This will be ≤ 0 provided that

ϑ = 2k − 1, R2 ≤ λk(2k − 1)
c

.

Thus the rational comparison function (12.2) can be used for the linear inequality (12.1),
alternative to the standard exponential function

v(r) = ε
(

e−αr2 − e−αR2)
,

see page 148 of [20], or page 34 of [18].
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12.2. The degenerate Laplacian case

A similar simplification can be used for the canonical inequality

∆pu− f(u) ≤ 0, u ≥ 0,(12.3)

for the p–Laplace operator, p > 1. For our present purpose, we assume that

f(u) ≤ cup−1,(12.4)

the borderline case for (1.6).
The comparison function v = v(r), r = |x|, for (6.1) again can be taken in the form

(12.2). Then we have

Φ(|v′|) = |v′|p−1 =
(

αϑ
R

)p−1 (

R
r

)(p−1)(ϑ+1)

;

Thus as before, we find after a short calculation that

[Φ(|v′|)]′ + n− 1
r

Φ(|v′|) +
f(v)
λ

≤ (αϑ)p−1
(

R
r

)(p−1)ϑ {

n− 1− (p− 1)(ϑ + 1)
rp +

c
λϑp−1

}

.

This again will be ≤ 0 provided that

ϑ =
2(n− 1)

p− 1
− 1, R ≤

(

(n− 1)λ
c

)1/p

ϑ1/p′ .

That is, ∆pv−f(v) ≥ 0 for R/2 ≤ |x| ≤ R, and the proof of the strong maximum principle,
Theorem 1.1, now applies unchanged, but without using Proposition 4.1.

In summary, for the borderline case (12.4) of inequality (12.3), we get an elementary
proof of Vázquez’ strong maximum principle, avoiding the delicate arguments of Sections 3
and 4, or of [41].

Note that the simple comparison function (12.2) does not suffice for general operators
or for more complicated nonlinearities. This observation indicates the need for the new
construction of v = v(r) used in the proof of Theorem 1.1. Of course, for more complicated
linearities it is also necessary to use the comparison Theorem 10.1 rather than the simpler
Theorem 5.4.
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vitelli 1, Perugia, Italy

E-mail address: pucci@dipmat.unipg.it

University of Minnesota, Department of Mathematics, Minneapolis, USA
E-mail address: serrin@math.umn.edu


