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ON THE DERIVATION OF HAMILTON’S EQUATIONS
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Dedicated to Walter Noll

§1. Introduction

In analytical dynamics the Lagrange system governing a holonomic mechanical system
with N degrees of freedom takes the form(

Lp(t, u, u′)
)′ − Lu(t, u, u′) = 0.

Letting H be the Legendre transform of L and v = Lp(t, u, u′) the conjugate momentum.
The Lagrange system is customarily transformed into Hamiltonian form, namely

u′ = Hv(t, u, v)

v′ = −Hu(t, u, v).

For elementary mechanics the Lagrangian L(t, u, p) takes the simple form

L(t, u, p) = 1
2 |p|

2 − V (u)

with the corresponding Hamiltonian

H(t, u, v) = 1
2 |v|

2 + V (u).

Almost equally easy is the mechanically natural situation when

L(t, u, p) = 1
2 (A(t, u)p, p)− V (t, u)

and A is a non–singular real symmetric matrix, the corresponding Hamiltonian then being

H(t, u, p) = 1
2 (A−1(t, u)v, v) + V (t, u)

1
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Beyond this case, standard derivations of the Hamilton equations presume that the Hes-
sian matrix of the Lagrangian is non–singular, and carry out the derivation in relatively
straightforward terms. At the same time, this procedure generally yields only a local re-
sult, or, from another point of view, a multiple valued Hamiltonian on the domain of the
conjugate variable. Such behavior is possible, in fact, even for positive definite Hessians,
provided the domain of p is non–convex.

This being the case, a first purpose of this paper is to set up conditions guaranteeing that
the Hamiltonian will be a single valued function over the entire domain of the conjugate
momenta – an objective which will be attained by means of convexity conditions on the
Lagrangian.

Another goal, which is equally important and also of interest for applications, concerns
the degree of smoothness which must be required of the Lagrangian in order for the Hamil-
ton system to be valid. Thus our second intention is to obtain the Hamilton equations
even when the Lagrangian is only of class C1, so that the Hessian is not defined, and
equally when the Hessian is defined but not everywhere non–singular (note that convex-
ity in itself forces the Hessian matrix only to be non–negative definite). Obviously the
standard derivations do not apply in either of these cases.

Specifically, we shall show that the Hamilton system is globally valid on the domain of
the conjugate momenta, solely under the following natural assumptions,

(i) the function L = L(t, u, p) is defined and of class C1 in a domain I × Ω, where I
is an open set of R1+N and Ω is an open convex set in RN ;

(ii) the function L(t, u, ·) is strictly convex for every fixed (t, u) ∈ I.
In view of the convexity assumptions in (i) and (ii) it is evident that L also satisfies the
condition

L(t, u, p)− L(t, u, p0) >
(
Lp(t, u, p0), p− p0

)
for all p, p0 ∈ Ω with p 6= p0; here (·, ·) denotes the inner product in RN . This relation,
called strict convexity in the sense of Weierstrass, is actually all that is required for our
analysis. That is, we can replace (i) and (ii) by

(i′) the function L = L(t, u, p) is defined and of class C1 in a domain I × Ω, where I
is an open set of R1+N and Ω an open set of RN ;

(ii′) the function L(t, u, ·) is strictly convex in the sense of Weierstrass for every fixed
(t, u) ∈ I.

Note that (i′), (ii′) are equivalent to (i), (ii) when Ω is convex; otherwise, if Ω is not
convex, then (i′), (ii′) are in general significantly weaker assumptions.

A derivation of Hamilton’s equations under these minimal conditions not only has an
intrinsic interest, but also allows one to consider singular Lagrangians, for example of the
form

L(t, u, p) =
1
m
|p|m − V (u), m > 1, m 6= 2,

(see e.g. [10]) as well as Lagrangians of the kind introduced into variational theory by
Ekeland and Temam, Clarke and others.
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In order to understand our purpose more clearly, it is worth commenting at some
length on the derivations of Hamilton’s equations which are presently available. First,
if one makes the classical assumptions that the function Lp is itself of class C1 and its
Hessian matrix Lpp =

(
∂2L/∂pi∂pj

)
is non–singular, then the derivation can be carried

out by routine differentiation together with an application of the standard implicit function
theorem.1 It is evident that this procedure, unaided by other considerations, can produce
only a local result. To show that the Hamiltonian is globally well–defined and single
valued on the complete domain of the conjugate variable requires further argument and
assumption, a fact seldom remarked in standard treatises. To underline what may occur,
consider the following non–quadratic Lagrangian in R2

L(p1, p2) = ep2 sin p1.

Here it is easily checked that |det Lpp| = e2p2 > 0, while the conjugate mapping

v1 = ep2 cos p1, v2 = ep2 sin p1

is obviously not globally one–to–one.
To deal with these questions one may simply postulate, as in Abraham & Marsden’s

treatise, that the conjugate mapping is a diffeomorphism. Here we avoid such a hypothesis
and rely instead on the convexity asssumptions introduced above. In this regard it is worth
noting that Arnold in his influential text [3] also introduces the hypothesis of convexity,
but then leaves the whole issue at a heuristic level (see pages 65–66).

When L is simply of class C1, or if Lpp is allowed to be singular, then we are aware of
full proofs only when L can be written in separated form

L(t, u, p) = G(p)− V (t, u), (t, u) ∈ I, p ∈ Ω,

with G and Ω convex, in which case a derivation can be given on the basis of work of
Rockafellar or of Mawhin & Willem in the context of convex analysis.

1This is the almost universal procedure found in treatises on analytical dynamics which deal at all with

general Lagrangians (see e.g., Amaldi & Levi–Civita, Lanczos, Gantmacher and Santilli, among others).
Of course many books treat only the elementary cases noted at the beginning of the introduction, or fail

to state any hypotheses whatever when they come to general Lagrangians. The latter is the situation

even for the famous monograph of Whittaker ([13], see pages 263, 264 of the last edition), which in other
respects is a reliable and scholarly work, containing as well historical comments on the Hamilton equations

(page 264) which are well worth reading. We remark finally the common, though incorrect, view that

the classical assumptions on L are necessary for the derivation of Hamilton’s equations; for example,
Santilli [12, pages 158 and 160] notes that when the Hessian is singular the implicit function theorem is

inapplicable, but goes on to state, inaccurately, that in this case the Hamiltonian cannot be defined with

a conventional Legendre transform. Moreover, on page 164 he adds that:
The case when L is only of class C1 will not be considered. It generally implies the breakdown of the

above indicated properties of the Legendre transform due to the [inapplicability of the Implicit Function
Theorem]. Therefore, the minimal continuity property of the Lagrangian, which we shall assume for the

validity of the direct Legendre transform, is L ∈ C2.
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More specifically, Mawhin & Willem require in addition to (i) and (ii) that the function
G = G(p), when extended to all of RN by setting G(p) = ∞ for p /∈ Ω, should satisfy
the condition G(p)/|p| → ∞ as |p| → ∞. Rockafellar on the other hand requires that G
be essentially smooth, namely that (i) and (ii) hold and |Gp(p)| → ∞ as p → p0 ∈ ∂Ω,
where ∂Ω denotes the set Ω \ Ω. It follows at once that Mawhin & Willem’s derivation
applies whenever Ω is convex and bounded, and Rockafellar’s whenever Ω = RN . On the
other hand, it is easy to construct examples in which (i) and (ii) hold yet neither Mawhin
& Willem’s nor Rockafellar’s condition is satisfied, and moreover in which G /∈ C2 or Gpp

is not everywhere positive definite. For such cases, therefore, even when L is separable no
direct proof of the Hamilton system seems to be available in the literature. Some examples
illustrating these points are of interest.

(1) G(p) = 1
m |p|

m, m > 1, m 6= 2; Ω = RN .
Here, because of the point p = 0, the function L is either not of class C2 (m < 2) or Lpp is
singular at p = 0 (m > 2). On the other hand, both Mawhin & Willem’s and Rockafellar’s
conditions apply. Note that in this case

H(t, u, v) =
m− 1

m
|v|m/(m−1) + V (t, u), (t, u) ∈ I, v ∈ RN .

(2) G(p) =
√

1 + |p|2 − 1; Ω = RN .
Here L is of class C2 and Lpp is positive definite. Hence the classical proof and Rockafellar’s
proof both apply, but not Mawhin & Willem’s. In this case, note that H(t, u, v) =
1−

√
1− |v|2 + V (t, u), (t, u) ∈ I, |v| < 1.

(3) G(p) = |p|2 + p2
1/p2; Ω = {p ∈ R2 : p2 > 0}, N = 2.

Here L is of class C2 and Lpp is positive definite, while also Mawhin & Willem’s condition
is satisfied, but not Rockafellar’s (because |Lp| 6→ ∞ as p → 0). This example is interesting
also because the domain of the conjugate variable v = Gp(p), namely

{v ∈ R2 : v2
1 + 4v2 > 0},

is not convex.
(4) G(p) = (1 + |p1|m)1/m/p2, m > 1, m 6= 2;

with
Ω = {p ∈ R2 : |p1|m < 2(m− 1), p2 > 0}, N = 2.

Neither Mawhin & Willem’s condition nor Rockafellar’s is satisfied; moreover, although
the function is strictly convex and of class C1 in Ω, it fails to be twice differentiable on
the ray p1 = 0, p2 > 0 if m < 2, while if m > 2 it is of class C2 in Ω but detLpp = 0 on
the ray. On the other hand, conditions (i) and (ii) and a fortiori (i′) and (ii′) are satisfied.

Another line of inquiry in which Hamilton’s equations are obtained under weak con-
ditions on the Lagrangian is due to Clarke. In his study, the minimization of the action
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integral is basic, and the Hamilton equations arise only in the form of a differential inclu-
sion. In consequence of the different goals intended in Clarke’s work, we shall not pursue
further relations between his conditions and ours.

As stated above, our purpose is to derive the Hamiltonian system under the conditions
(i′) and (ii′) given at the beginning of the paper. Our principal results are the following
Theorems 1–4 and the corollary applications of Theorems 5–7. Theorem 7 in particular
is the famous energy identity of Hamilton, presented here in both its original version and
in its less well known Lagrangian form, while Theorem 8 is its extension to the quasi–
variational case. In stating these results we assume that conditions (i′) and (ii′) hold
throughout.

For definiteness in what follows, we understand a solution of Lagrange’s equation to be
a function u = u(t) which is of class C1 from some interval J ⊂ R into RN and is such
that

(1) (t, u(t), u′(t)) ∈ I × Ω for t ∈ J ;
(2) the conjugate momentum v(t) = Lp(t, u(t), u′(t)) is continuously differentiable in

J ;
(3) v′(t) = Lu(t, u(t), u′(t)) for all t ∈ J .

These conditions are, moreover, the natural assumptions under which Hamilton’s equa-
tions are well–defined.

§2. Main Results

Here we state our main conclusions, it being assumed that conditions (i′) and (ii′) hold
throughout. Proofs will be given in Section 3.

Theorem 1. The function Lp(t, u, ·) : Ω → Ωt,u for fixed (t, u) ∈ I is a homeomorphism.

In view of Theorem 1 we can define the inverse map

P(t, u, v) =
(
Lp(t, u, ·)

)−1(v)

from D into Ω, where

D = {(t, u, v) ∈ I × RN : (t, u) ∈ I, v ∈ Ωt,u}.

Theorem 2. The domain D is open and P is continuous in D.

We may now introduce the Legendre transform H of L as follows. Let

(2.1) H(t, u, p) =
(
Lp(t, u, p), p

)
− L(t, u, p).
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Then we define H : D → R by

(2.2) H(t, u, v) = H(t, u, p),

where
p = P(t, u, v), v = Lp(t, u, p).

Clearly H ∈ C(D).

Theorem 3. The function H is continuously differentiable with respect to v, and for
(t, u, v) ∈ D we have

(2.3) Hv(t, u, v) = p.

Moreover for each fixed (t, u) ∈ I the function H(t, u, ·) is strictly convex in the sense of
Weierstrass, namely for every v, w ∈ Ωt,u with v 6= w there holds

(2.4) H(t, u, v)−H(t, u, w) >
(
Hv(t, u, w), v − w

)
.

The domain Ωt,u of the variable v need not be convex, even if Ω is convex, cf. Example 3.
Moreover for this example it is easy to see that the Hamiltonian cannot be extended as a
strictly convex function to all of RN , which is here the convex hull of Ωt,u (though it can
be so extended as a convex function).

The proofs of Theorems 1–3 are straightforward, though not entirely obvious; the argu-
ments employed are a direct minimization procedure together with a difference quotient
argument to calculate Hv. It is worth noting also that the inverse function theorem is
not required. Proofs using the Fenchel transform, as e.g. in Mawhin & Willem [8], are
possible as well – they would seem to be somewhat less direct, however, and less easy to
understand.

With the aid of Theorems 1 and 3, it is easy to derive Hamilton’s equations for the
special case when

L(t, u, p) = G(p)− V (t, u)

(of course here it is assumed only that L satisfies conditions (i′) and (ii′) in the introduc-
tion, and in particular that G and V are only of class C1). First we have by Theorem 1

v = Gp(p), p = G−1
p (v) = P(v),

and in turn one calculates without difficulty that

H(t, u, v) = G∗(v) + V (t, u),



On the derivation of Hamilton’s equations 7

where G∗ is the Legendre transform of G. Moreover, since p is constant when v is constant,
we get

Ht(t, u, v) = −Lt(t, u, p)

Hu(t, u, v) = −Lu(t, u, p).

Thus, in view of Theorem 3, the function H is of class C1(D) and Hamilton’s equations
follow at once; see Theorem 6 below. A similar but slightly more delicate computation
applies also to Lagrangians of the form L(t, u, p) = Φ(t, u)G(p) − V (t, u), Φ(t, u) > 0,
yielding again that H is of class C1(D) and that Ht = −Lt, Hu = −Lu.

The last conclusions are also valid under the assumptions (i′) and (ii′) alone, without
assuming that L is separable. In particular we have the following general result, which
complements Theorem 3 by showing that in all cases H is necessarily of class C1(D).

Theorem 4. The function H is continuously differentiable with respect to t, u, and

Ht(t, u, v) = −Lt(t, u, p),(2.5)

Hu(t, u, v) = −Lu(t, u, p).(2.6)

Theorems 3 and 4 have a number of important corollaries.

Theorem 5 (Duality). The Legendre transform of H(t, u, ·) is L(t, u, ·) for every fixed
(t, u) ∈ I.

The duality in Theorem 5 can be expressed elegantly in the form

L(t, u, p) +H(t, u, v) = (p, v),

where
v = Lp(t, u, p), p = Hv(t, u, v).

Similarly the result of Theorem 4 can be written dually as

Lx(x, p) +Hx(x, v) = 0,

where x denotes the variable (t, u) ∈ I.
In the following Theorems 6–8 the variable t is always understood to be in the domain

of the solution in question.
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Theorem 6. Let u = u(t) be a solution of the Lagrangian system

(2.7)
(
Lp(t, u, u′)

)′ − Lu(t, u, u′) = 0.

Then the pair
u = u(t), v = v(t) = Lp(t, u(t), u′(t))

is a solution of the Hamiltonian system

(2.8)
u′ = Hv(t, u, v)

v′ = −Hu(t, u, v)

and conversely.

Theorem 7. Let (u, v) = (u(t), v(t)) be a solution of the Hamilton system (2.8). Then

(2.9) {H(t, u(t), v(t))}′ = Ht(t, u(t), v(t)).

Similarly if u = u(t) is a solution of the Lagrange system (2.7), then H(t, u(t), u′(t)) is of
class C1 and

(2.10) {H(t, u(t), u′(t))}′ = −Lt(t, u(t), u′(t)).

In the second part of Theorem 7 neither the function H(t, u, p), defined in (2.1), nor
the function u′(t) need be of class C1. Even so, by the result of Theorem 7, the composite
function H(t, u(t), u′(t)) is of class C1.

Our results also imply that the quasi–variational system2

(2.11)
(
Lp(t, u, u′)

)′ − Lu(t, u, u′) = Q(t, u, u′)

can be written in the Hamiltonian form

u′ = Hv(t, u, v)

v′ = −Hu(t, u, v) + Q(t, u, u′);

in the last line u′ can of course be replaced by P(t, u, v). Hence, with the notation (·, ·) as
inner product, we have the following

2See, e.g. Pars, equations (6.5.9) and (10.13.14), though in both these cases the intended functions Q

are, unnecessarily, supposed to depend at most linearly on u′.
More recently Santilli, equation (I.18) in [12], has presented a general system equivalent to (1.11) for

forces not derivable from a potential. In [10] Pucci & Serrin have initiated a stability analysis for systems

governed by (2.11) when the perturbation term Q represents a non–linear damping.
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Theorem 8. Along any solution u = u(t) of (2.11) there holds

{H(t, u(t), u′(t)}′ =
(
Q(t, u(t), u′(t)), u′(t)

)
− Lt(t, u(t), u′(t)).

§3. Proofs.

For simplicity in the notation, we denote by x any pair (t, u) ∈ I.

Proof of Theorem 1. Fix x ∈ I. First we show that Lp(x, ·) : Ω → Ωx is 1–1. Otherwise
there would be points p1 6= p2 in Ω with Lp(x, p1) = Lp(x, p2). Since L is strictly convex
in the sense of Weierstrass we get

L(x, p2)− L(x, p1) >
(
Lp(x, p1), p2 − p1

)
, L(x, p1)− L(x, p2) >

(
Lp(x, p2), p1 − p2

)
.

Adding these yields an immediate contradiction. Hence Lp(x, ·) is 1–1.
We next show that

(
Lp(x, ·)

)−1 is continuous in Ωx ≡ Lp(x, Ω), or what comes to
the same thing, that the map Lp(x, ·) is open. Suppose v0 = Lp(x, p0) ∈ Ωx and let
C = B(p0, ρ) be an open ball centered at p0 and with radius ρ, whose closure is in Ω. We
shall show that there exists an open ball B(v0, r) ⊂ RN such that B(v0, r) ⊂ Lp(x,C) ⊂
Ωx.

By the strict convexity of L(x, ·) in C there exists a number d > 0 such that

L(x, p)− L(x, p0)− (v0, p− p0) ≥ d > 0 for every p ∈ ∂C.

Choose r ∈ (0, d/ρ) and let v ∈ B(v0, r). The function

g(p) = L(x, p)− L(x, p0)− (v, p− p0)

is zero at p = p0 and for p ∈ ∂C we have

g(p) = L(x, p)− L(x, p0)− (v0, p− p0)− (v − v0, p− p0) ≥ d− r · ρ > 0.

Hence g has a minimum at some point pv ∈ C and 0 = gp(pv) = Lp(x, pv) − v, which
proves the claim. It follows that Lp(x, ·) is open, which completes the proof.

Remark. If in place of condition (ii′) one assumes only that L is of class C2 and Lpp is
non–singular, or even positive definite, in I × Ω, then the result of Theorem 1 may not
hold, since for non–convex domains Ω the mappings Lp(x, ·) need not be 1–1.

This comment also shows the value of the assumptions (i′) and (ii′) as minimal hy-
potheses in the derivation of the function P and its domain D.
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Proof of Theorem 2. Consider the mapping f : I × Ω → D defined by

f(x, p) =
(
x,Lp(x, p)

)
.

By Theorem 1 this mapping is 1–1. Thus it is enough to prove that f is open.
Let (x0, v0) ∈ D. Hence v0 = Lp(x0, p0) for some p0 ∈ Ω. Let γ > 0 be so small that

the closure of
Ĉ = { (x, p) : |x− x0| < γ, |p− p0| < γ }

is contained in I × Ω. Define

d = inf{L(x, p)− L(x, p0)−
(
Lp(x, p0), p− p0

)
: |x− x0| < γ, |p− p0| = γ } > 0

and put
B̂ = { (x, v) ∈ I × RN : |x− x0| < γ, |v − Lp(x, p0)| < d/γ }.

This set is open, by the continuity of Lp(·, p0). Moreover it is contained in f(Ĉ) ⊂ D, as
is easily seen using the argument of Theorem 1. Hence the map f is open, and so in turn
P is continuous, which completes the proof.

Proof of Theorem 3. Fix (x, v) ∈ D and e ∈ SN−1. For small, non–zero h ∈ R define

σ = σ(h) = P(x, v + he)− P(x, v);

clearly σ → 0 as h → 0. Since p = P(x, v) it follows also

(3.1) v = Lp(x, p), v + he = Lp(x, p + σ).

Then from (2.1), (2.2) and (3.1) we get for sufficiently small h

(3.2)

H(x, v + he)−H(x, v) = H(x, p + σ)−H(x, p)

= (v + he, p + σ)− L(x, p + σ)− (v, p) + L(x, p)

= (p, e)h + (v + he, σ)− L(x, p + σ) + L(x, p).

The assertion (2.3) now results if we show that

(3.3) I = L(x, p + σ)− L(x, p)− (v + he, σ) = o(h) as h → 0,

for then it follows from (3.2) that H is differentiable with respect to v and Hv(x, v) = p,
as required.

Now from (ii′) we have (since σ 6= 0)

L(x, p + σ)− L(x, p) >
(
Lp(x, p), σ

)
= (v, σ),
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so that I > −(σ, e)h and also

I <
(
Lp(x, p + σ), σ

)
− (v + he, σ) = 0

by (3.1). Thus |I| < |σ| · |h| = o(h) and (3.3) is proved.
Finally, to prove (2.4), we have in the obvious notation

H(x, v)−H(x,w) = (v, p)− L(x, p)− (w, q) + L(x, q)

= (q, v − w) + L(x, q)− L(x, p)− (v, q − p)

=
(
Hv(x, w), v − w

)
+ L(x, q)− L(x, p)− (Lp(x, p), q − p

)
by (2.1), (2.2) and (2.3). Thus (2.4) follows from (ii′).

Proof of Theorem 4. First suppose that Lp is differentiable in I × Ω, and that Lpp is
everywhere positive definite in I × Ω. The formulas (2.5) and (2.6) are then standard,
as we have observed in the introduction. For completeness we recall the proof. By the
identity

v = Lp(x,P(x, v)) in D

and the regularity of Lp it is easy to prove directly that Px exists in D and

Px(x, v) = −
(
Lpp(x, p)

)−1Lpx(x, p).

Therefore H is differentiable with respect to x and by the chain rule

Hx(x, v) = (Px(x, v), v)− Lx(x, P(x, v))−
(
Lp(x,P(x, v)),Px(x, v)

)
= −Lx(x, P(x, v)),

as required.
We now turn to the main case, when Lp is not smooth. Let L̂ = L̂(h, x, p) be defined

in Eh = (−1, 1)× I × Ωh by

L̂(h, x, p) =


∫

RN

L(x, y)Kh(y − p)dy, h 6= 0,

L(x, p), h = 0,

where
Ωh = { p ∈ Ω : B(p, h) ⊂ Ω }, Kh(s) =

1
h

K(|s|/h), s ∈ RN ,

and K is a symmetric mollification kernel with support in the interval (−1, 1).
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Since L ∈ C1(I ×Ω) it follows that L̂, L̂x, L̂p are continuous in Eh. Moreover an easy
computation shows that L̂(h, x, ·) is strictly convex in the sense of Weierstrass in the open
set Ωh.

Replacing x in Theorem 2 by (h, x), it is also clear that the map

P̂(h, x, v) =
(
L̂p(h, x, ·)

)−1(v)

is continuous in the open set

D̂ = { (h, x, v) : (h, x) ∈ (−1, 1)× I and v = L̂p(h, x, p) for p ∈ Ωh }.

Consequently

Ĥ(h, x, v) = Ĥ(h, x, p) =
(
L̂p(h, x, p), p

)
− L̂(h, x, p),

v = L̂p(h, x, p), p = P̂(h, x, v),

is also continuous in D̂. Finally L̂p(h, ·, ·) is of class C1(I × Ωh) for h 6= 0.
To complete the proof we need the following result, of interest in itself.

Lemma. The matrix L̂pp(h, ·, ·) is positive definite in I × Ωh for h 6= 0.

Proof of the Lemma. Let ξ ∈ SN−1be fixed. It is easily seen that

(
L̂pp(h, x, p)ξ, ξ

)
= −

∫
|s|<h

(
Lp(x, p + s), ξ

)
·
(
Kh,s(s), ξ

)
ds.

Let (e1, . . . , eN−1, ξ) be an orthonormal basis for RN , with corresponding coordinates
s = (z, τ) = (z1, . . . , zN−1, τ). Then by Fubini’s theorem, with ζ =

∑N−1
1 ziei,

(
L̂pp(h, x, p)ξ, ξ

)
= −

∫
|z|<h

∫
|τ |<rz

(
Lp(x, p + ζ + τξ), ξ

)
·
(
Kh,s(ζ + τξ), ξ

)
dτdz,

where rz is defined in the obvious way. Next note from the strict convexity of L(x, ·) that(
Lp(x, p+ζ+τξ), ξ

)
is a strictly increasing function of τ in (−rz, rz), while

(
Kh,s(ζ+τξ), ξ

)
is an odd function of τ in (−rz, rz), positive for negative τ and negative for positive τ .
Therefore the inner integral is negative and consequently(

L̂pp(h, x, p)ξ, ξ
)

> 0,

as required.
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It now follows, as shown above, that Ĥ(h, ·, ·) is differentiable with respect to x in D̂
when h 6= 0 and

Ĥx(h, x, v) = −L̂x(h, x, p),

p = P̂(h, x, v), v = L̂p(h, x, p).

We now complete the proof of the theorem. By the continuity of Ĥ, L̂x and P̂ in D̂ we
obtain

Ĥ(h, x, v) → H(x, v) and Ĥx(h, x, v) → −Lx(x, p) as h → 0, h 6= 0,

uniformly in compact sets of D̂. Hence H is differentiable with respect to x and moreover

Hx(x, v) = −Lx(x, p), p = P(x, v).

Remark. It would also be possible to prove Theorem 3 by the alternative method of
mollification, as in Theorem 4. This would slightly shorten the development, but at the
same time would obscure the direct and straightforward derivation given here. Moreover,
when the Lagrangian has the separated form L(t, u, p) = Φ(t, u)G(p)−V (t, u), the present
approach is certainly the easiest (see the discussion after the statement of Theorem 3 in
the Introduction).

Proof of Theorem 5. Let x ∈ I be fixed and let L∗(x, p) denote the Legendre transform
with respect to v of H(x, v), which exists since H ∈ C1(D) and H(x, ·) is strictly convex
in the sense of Weierstrass. Then

L∗(x, p) =
(
Hv(x, v), v

)
−H(x, v),

where p and v are related by the formula

p = Hv(x, v).

But Theorem 3, formula (2.3), yields the relation

Hv(x, v) = P(x, v) =
(
Lp(x, ·)

)−1(v)

and so
v = Lp(x, p).

Hence, using also (2.1) and (2.2),

L∗(x, p) = (p, v)−H(x, p) = (p, v)− (v, p) + L(x, p) = L(x, p),
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as required.

Proof of Theorem 6. A solution of (2.7) is a C1 function u from some interval J ⊂ R into
RN such that v(t) = Lp(t, u(t), u′(t)) is a C1 function in J and v′(t) = Lu(t, u(t), u′(t))
in J . Hence by (2.6) of Theorem 4 we have v′(t) = −Hu(t, u(t), v(t)). Furthermore
u′(t) = P(t, u(t), v(t)) = Hv(t, u(t), v(t)), by (2.3) of Theorem 3.

Proof of Theorem 7. Along a solution (u, v) of (2.8) we have by Theorems 3 and 4 that
H(·, u(·), v(·)) is of class C1 and so

(3.4)

{H(t, u(t), v(t))}′ = Ht(t, u(t), v(t)) +
(
Hu(t, u(t), v(t)), u′(t)

)
+

(
Hv(t, u(t), v(t)), v′(t)

)
= Ht(t, u(t), u′(t)),

proving (2.9). To obtain the second part of Theorem 7, observe that if u is a solution of
the Lagrange system (2.7), and (u, v) is the corresponding solution of (2.8), then

H(t, u(t), u′(t)) = H(t, u(t), v(t))

by (2.2). Hence H(t, u(t), u′(t)) is of class C1, and (2.10) follows from (2.9) and (2.5).

Proof of Theorem 8. This is proved in the same way as Theorems 6 and 7. Note that the
last line of (3.4) should be replaced by

Ht(t, u(t), u′(t)) +
(
Q(t, u(t), u′(t)), u′(t)

)
since v′ = −Hu + Q. The required result now follows as before from (2.2) and (2.5).

Concluding Remark. Under the minimal assumptions used in this paper, solutions of the
initial value problem for either Lagrange’s system or Hamilton’s equations need not be
unique. It is of course clear that uniqueness will hold when L is of class C2 and the
Hessian is positive definite. On the other hand, if we consider the Lagrangian of example
(1) in the Introduction, this assumption fails at p = 0 when m 6= 2. At the same time,
provided that m ≤ 2 and V ∈ C2 the Hamiltonian

H(t, u, v) =
m− 1

m
|v|m/(m−1) + V (t, u)

is of class C2. Hence for this example the initial value problem for the Hamiltonian system
– and thus also for the Lagrange system – necessarily has a unique solution. Thus there
are cases where L is not of class C2 but for which uniqueness does hold. We intend to
return to this situation in more detail in a later paper.

§4. Appendix on the general Young inequality.

The following result is well–known through the Fenchel transform. Here we give a
direct proof based on the results of Theorems 1 and 3.
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Theorem (Young’s inequality). Let L = L(p) be of class C1 and strictly convex in
the sense of Weierstrass in an open set Ω ⊂ RN . Also let H = H(v) be the Legendre
transform of L, defined for v ∈ Ω∗ = Lp(Ω). Then for all p ∈ Ω and q ∈ Ω∗ we have

(4.1) (p, q) ≤ L(p) +H(q)

with equality if and only if p and q are related by q = Lp(p).

Proof. Let v = Lp(p). Then by (2.1), (2.2) we have H(v) = (p, v) − L(p), so (4.1) holds
with equality.

If q 6= v, then

H(q) + L(p) = H(v) + L(p) +H(q)−H(v) > (p, v) + (Hv(v), q − v),

since H is strictly convex in the sense of Weierstrass (see Theorem 3). Thus in turn, by
(2.3),

H(q) + L(p) > (p, v) + (p, q − v) = (p, q),

completing the proof.

The choice
L(p) =

1
m
|p|m, H(v) =

m− 1
m

|v|m/(m−1),

gives the original case envisaged by Young:

(p, v) ≤ 1
m
|p|m +

1
s
|v|s, where

1
m

+
1
s

= 1

and equality holds if and only if v = |p|m−2p. When L(p) =
√

1 + |p|2 − 1 we get

(p, q) ≤
√

1 + |p|2 −
√

1− |q|2

for all p ∈ RN and q ∈ RN with |q| < 1. Equality holds if and only if p and q are parallel
and (1 + |p|2)(1− |q|2) = 1.
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