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1. Introduction

The problem of asymptotic stability for second order ordinary differential equations is
well–known in the literature. Recently, various extensions of this work have been given for
the case of second order hyperbolic systems (see [1–5]). On the other hand, the situation
for parabolic systems has received much less discussion, so that a study of this problem
seems worthwhile.

We consider specifically systems of the form

(1.1)

{
A(t)|ut|m−2ut = ∆u− f(x, u), (t, x) ∈ J × Ω,

u(t, x) = 0, (t, x) ∈ J × ∂Ω,

where J = [0,∞) and Ω is a bounded open subset of Rn. The values of u are taken in
RN , N ≥ 1, and

A ∈ C(J → RN×N ), f ∈ C(Ω× RN → RN ),

with m > 1 a fixed exponent. In order that (1.1) be parabolic, it is necessary to have

(1.2)
(
A(t)v, v

)
> 0 for all t ∈ J and v ∈ RN \ {0},

where
(
·, ·
)

is the inner product in RN ; in particular note that A need not be symmetric.
Moreover, we assume that f represents a restoring force derivable from a potential F ,
namely,

(1.3)
(
f(x, u), u

)
≥ 0

4.9and

(1.4) f(x, u) =
∂F

∂u
(x, u),

1
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where F ∈ C1(Ω × RN → R) and F (x, 0) = 0. The last condition is a normalization
which can be assumed without loss of generality.

Note specifically that the relation (1.4) is redundant when N = 1, since in this case
F can be obtained simply by integrating the force with respect to u.

If we take m = 2 then (1.1) reduces to the strongly coupled parabolic system

A(t)ut = ∆u− f(x, u),

or simply to
ut = ∆u− f(x, u),

when A(t) = I.
A canonical example of the type of functions f which we contemplate here is

(1.5) f(x, u) = V (x)|u|p−2u,

where 1 < p <∞, m ≤ max{p, 2n/(n− 2)} and V ∈ C(Ω → R+
0 ).

In the context of problem (1.1) the question of asymptotic stability of the rest state
is best considered in terms of the natural energy associated with solutions of the system,
namely,

Eu(t) =
∫

Ω

{ 1
2 |Du(t, x)|

2 + F (x, u(t, x))}dx.

In particular, the rest field u(t, x) ≡ 0 will be called asymptotically stable (in the mean),
if and only if

lim
t→∞

Eu(t) = 0 for all solutions u = u(t, x) of (1.1).

In this formulation we have tacitly assumed that solutions are classical, but for a useful
theory one must actually consider solutions in a wider class of functions. We treat this
question in Section 2. Our main result is formulated in Section 3, and several applications
are given in Section 4, including for example the mean curvature equation

(1.6) A(t)ut = div

(
Du√

1 + |Du|2

)

and the degenerate Laplace system

(1.7) A(t)ut = div(|Du|s−2Du), s > 1.

We assume throughout that the reader is familiar with the results of reference [5],
particularly Sections 2, 3 and 6.
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The linear case

An important special case of (1.1) and (1.5) occurs when p = m = 2 and A(t) =
a(t)tα, with a ∈ C(J → R+

0 ) and α ∈ R. The system then becomes (with N = 1)

a(t)tαut = ∆u− V (x)u.

If a is bounded on J , and V is as above, then we prove that the rest state is asymptotically
stable if α ≤ 1. On the other hand, if a is also bounded from zero in J , then for α > 1
there exist solutions which approach non–zero functions ψ = ψ(x) as t→∞.

2. Definition of Solutions

To provide an appropriate definition for solutions of (1.1) it is convenient first to
introduce the elementary bracket pairing in Ω ⊂ Rn

〈ϕ,ψ〉 = 〈ϕ,ψ〉(t) =
∫

Ω

(ϕ,ψ)dx, where ϕ, ψ : J × Ω → RN ,

this being a well–defined real function of time for all t ∈ J such that (ϕ,ψ) ∈ L1(Ω). We
write for simplicity

Lp =
[
Lp(Ω)

]N
, X =

[
W 1,2

0 (Ω)
]N
,

where p > 1; these spaces are endowed respectively with the natural norms

‖ϕ‖Lp , ‖ϕ‖X = ‖Dϕ‖L2 = ‖Dϕ‖.

Now define K ′ = C(J → X) and

K = {φ ∈ K ′ : Eφ is locally bounded on J},

where Eφ is the total energy of the field φ, that is

Eφ = Eφ(t) = 1
2‖Dφ‖

2 +
∫

Ω

F (x, φ(t, x))dx,

it being tacitly assumed that F (·, φ(t, ·)) ∈ L1
loc(Ω) for all t ∈ J .

We can now give our principal definition. A strong solution of (1.1) is a function
u ∈ K which is weakly differentiable with respect to t in J × Ω and which satisfies the
following two conditions:
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(A) Conservation Law

(i) R(t) ∈ L1
loc(J),

(ii) Eu
]t
0

= −
∫ t

0

R(s)ds for all t ∈ J ,

where R(t) = 〈A(t)ut, |ut|m−2ut〉.

(B) Distribution Identity∫ t

0

{〈Du,Dφ〉+ 〈A(s)ut, |ut|m−2φ〉+ 〈f(·, u), φ〉}ds = 0

for all t ∈ J and φ ∈ K.
For various comments on this definition in the related context of damped wave

systems, see [5].
An important issue is to determine a class of functions A(t) and f(x, u) for which

the second and third terms in the distribution identity are well–defined, i.e. satisfy

(2.1) 〈A(t)ut, |ut|m−2φ〉, 〈f(·, u), φ〉 ∈ L1
loc(J).

Letting r = 2n/(n − 2) be the Sobolev exponent for the space X (r = ∞ if n = 1;
2 < r <∞ if n = 2, since Ω is bounded), we make the natural hypothesis

(2.2) |f(x, u)| ≤ Const. [1 + |u|p−1], p > 1.

Moreover, if n ≥ 3 and p > r, we suppose there are constants κ > 0 and κ0 ≥ 0 such that

(2.3)
(
f(x, u), u

)
≥ κ|u|p − κ0|u|.

Also, for t ∈ J , let

(2.4) H(t) = |A(t)|, h(t) = min
|v|=1

(
A(t)v, v

)
;

by (1.2) it is clear that both h(t) and H(t) are positive and continuous on J .
Under assumptions (2.2)–(2.3), the conditions (2.1) then hold provided that

(2.5) m ≤ max{p, r}, δ ∈ L1
loc(J),

where δ = δ(t) = Hm/hm−1. This is proved almost exactly as in Section 2 of [5]. In
particular, Lemmas 2.1 and 2.2 of [5] hold exactly as stated, so that 〈f(·, u), φ〉 is locally
bounded on J when u, φ ∈ K. Hence this term in (B) is well–defined.
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To show that the first part of (2.1) also holds, we observe by Schwarz’ inequality and
(2.4) that, for (t, x) ∈ J × Ω,

(2.6)

|
(
A(t)ut, |ut|m−2φ

)
| ≤ H(t)|ut|m−1|φ| ≤ H(t)|ut|2/m′

|ut|(m−2)/m′
|φ|

≤ H(t)h(t)−1/m′(
A(t)ut, ut

)1/m′

|ut|(m−2)/m′
|φ|

= δ(t)1/m
(
A(t)ut, |ut|m−2ut)1/m′

|φ|,

where m′ is the Hőlder conjugate of m. In turn, from Hőlder’s inequality and the definition
of R(t),

(2.7) |〈A(t)ut, |ut|m−2φ〉| ≤ δ(t)1/m · R(t)1/m′
· ‖φ‖Lm ,

for t ∈ J . Hence by Hőlder’s inequality again, together with the facts that δ(t) and R(t)
are in L1

loc(J), and that ‖φ‖Lm is in L∞loc(J), see Lemma 2.1 of [5], the condition (2.1)1
follows at once.

Remark. When N = 1, or when A(t) is a multiple of the identity matrix, we have
h(t) = H(t) = |A(t)|, so that δ(t) = |A(t)|. Moreover, if either n = 1 or 2, the restriction
on m reduces simply to 1 < m <∞.

3. Asymptotic Stability

We can now give the main result of the paper.

THEOREM 3.1. Let (2.2), (2.3) and (2.4) hold. Suppose there exists a non–negative
continuous function k on J , such that

k /∈ L1(J),(3.1)

lim inf
t→∞

∫ t

0

δ kmds

/ (∫ t

0

kds

)m

<∞.(3.2)

Then the rest state u ≡ 0 of (1.1) is asymptotically stable.

Proof. The proof is essentially the same as for Theorem 3.1 of [5], with the main
difference that (3.18) in that paper is here replaced by the relation

(3.3)
∫ t

T

(
‖Du‖2 + 〈f(·, u), u〉+ 〈A(s)ut, |ut|m−2u〉

)
k(s)ds = 0.
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Because of the simpler form of this identity, it is no longer necessary to assume that k is
of bounded variation, or to make use of the analogue of Lemma 3.3 of [5]. On the other
hand, the analogues of Lemmas 3.1 and 3.4 continue to hold, as is easily seen. Moreover,
for the analogue of Lemma 3.2 we have specifically, see (2.7),

∫ t

T

|〈A(s)ut, |ut|m−2u〉|k(s)ds ≤
(∫ t

T

δ kmds

)1/m(∫ t

T

R(s)ds
)1/m′

‖u‖Lm

≤ ε(T )
(∫ t

0

δ kmds

)1/m

for t ≥ T ≥ 0, and ε(T ) → 0 as T →∞, as in [5]. This being the case, we get from (3.3),
exactly as in the proof of Theorem 3.1 of [5],

−α
∫ t

T

kds+ ε(T )
(∫ t

0

δ kmds

)1/m

≥ 0

for t ≥ T ≥ 0. By (3.2) there is a sequence ti ↗∞ and a number M > 0 such that∫ ti

0

δ kmds ≤
(
M

∫ ti

0

kds

)m

.

Consequently, taking T so large that ε(T )M ≤ α/2, we obtain

α

2

∫ T

0

kds− α

2

∫ ti

T

kds ≥ 0,

which yields an immediate contradiction with (3.1) when ti ↗ ∞. This completes the
proof.

4. Applications

Important special cases of Theorem 3.1 occur when k = 1 and k = δ1/(1−m). In the
first case, the assumptions (3.1) and (3.2) reduce to the single condition

(4.1) lim inf
t→∞

1
tm

∫ t

0

δ(s)ds <∞,

and in the second to

(4.2)
∫ ∞

0

δ1/(1−m)dt = ∞.
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An interesting extension of the results occurs if the term A(t)|ut|m−2ut in (1.1) is
replaced by a general function of the form Q(t, x, u, ut). In this case it is necessary to
define R(t) = 〈Q(t, ·, u, ut), ut〉 in condition (A) of Section 2 and to replace the principal
conditions (2.4), (2.5) by – see (2.6) –

(4.3) |Q(t, x, u, v)| ≤ δ̂(t)1/m ·
(
Q(t, x, u, v), v

)1/m′

,

where 1 < m ≤ max{p, r} and δ̂ ∈ L1
loc(J). Then Theorem 3.1 continues to hold, provided

in (3.2) we change δ km to δ̂ km.

Finally, the Laplace operator in (1.1) can be replaced by various elliptic operators
without affecting the results, as shown in Section 6 of [5]. Cases of particular importance
arise for the mean curvature equation (1.6) and the degenerate Laplace system (1.7).

In the case of (1.6), for instance, we take X = W 1,1
0 (Ω). Condition (2.2) holds

trivially since f ≡ 0, while on the other hand (2.3) fails for all p > 1. It is therefore
necessary to replace the first condition of (2.5) by m ≤ r, where r is the Sobolev exponent
for W 1,1

0 (Ω), namely r = n/(n − 1). Obviously m = 2 in the present case, which gives
the condition 2 ≤ n/(n− 1). This means that our stability results apply to (1.6) exactly
when n = 1 or n = 2. More precisely, we have the following conclusion.

THEOREM 4.1. Let u be a strong solution of equation (1.6), and suppose either n = 1
or n = 2. Assume there exists a non–negative continuous function k on J such that (3.1)
and (3.2) hold with m = 2 and δ(t) = A(t). Then

(4.4) lim
t→∞

∫
Ω

√
1 + |Du|2 dx = |Ω|.

Proof: Equation (1.6) corresponds to the case

A(w) = w/
√

1 + |w|2, G(w) =
√

1 + |w|2 − 1, s = 1

in [5], Section 6.3. Since f ≡ 0, the total energy of the field u is easily seen to be given by

Eu(t) =
∫

Ω

G(Du(t, x)) dx.

As in Section 3 we then obtain Eu(t) → 0 as t → ∞, which is equivalent to the stated
conclusion. This result also implies that ‖u‖L2 → 0 as t→∞.

A similar argument also applies to the system (1.7), giving the corresponding
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THEOREM 4.2. Let u be a strong solution of the system (1.7), where

s ≥ 2n/(n+ 2).

Assume there exists a non–negative continuous function k on J such that (3.1) and (3.2)
hold with m = 2 and δ(t) = H2/h. Then

(4.5) lim
t→∞

‖Du‖Ls = 0.

When A(t) is uniformly bounded on J , the conditions (3.1) and (3.2) are satisfied
with k = 1. In particular, then, the rest state for (1.6) and for (1.7) is asymptotically stable
in the classical case A(t) ≡ I, provided that n = 1 or n = 2 for (1.6), or s ≥ 2n/(n + 2)
for (1.7).

Another case of interest occurs for the modified equations

(1.6)′
ut√

1 + |Du|2
= div

(
Du√

1 + |Du|2

)

and

(1.7)′
ut√

1 + |Du|2
= div(|Du|s−2Du)

(with N = 1), whose left hand sides represent the normal velocity of the surface u = u(t, x)
as a function of time in the (n+ 1)–dimensional (x, u) space. These equations cannot be
put in the form (1.6), (1.7) because the coefficient 1/

√
1 + |Du|2 depends on both t and

x. On the other hand, by taking

Q(t, x, u, v) =
v√

1 + |Du(t, x)|2
,

as at the beginning of this section, we find that

|Q(t, x, u, v)| ≤
(
Q(t, x, u, v)v

)1/2
.

Thus (4.3) holds with m = 2 and δ̂ ≡ 1. In turn, the conclusion (4.4) of Theorem 4.1
holds for (1.6)′ when n = 1 or n = 2, and the conclusion (4.5) of Theorem 4.2 holds for
(1.7)′ when s ≥ 2n/(n+ 2).

The linear case
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Consider the problem

(4.6)

{
a(t)tαut = ∆u− V (x)u in J × Ω,

u(t, x) = 0 on J × ∂Ω,

where N = 1 for simplicity, Ω is a bounded open subset of Rn, and a ∈ C(J → R+
0 ),

V ∈ C(Ω → R+). Since N = 1 we have δ(t) = H(t) = a(t)tα in (2.5); it is convenient
here to take J = [1,∞) in order to avoid the singularity at t = 0 when α < 0. Then, with
m = p = 2, it is clear that (2.2) and (2.5)1 are satisfied. Moreover, assuming that

(4.7) a(t) ≤ C in J,

we get (2.5)2.
It follows now, either from (4.1) or (4.2), that the rest state is asymptotically stable

for (4.6) whenever (4.7) holds and α ≤ 1. [Actually, using (4.2), we find that asymptotic
stability holds for α ≤ 1 even when (4.7) is replaced by a(t) ≤ C log t.]

When α > 1, neither (4.1) nor (4.2) applies. In fact, in this situation solutions of
(4.6) do not in general approach zero as t→∞. To illustrate this case, let ϕk be the kth

eigenfunction of −∆ + V (x) in Ω, with Dirichlet boundary conditions.
We say that a function

ψ = ψ(x) ∈ Y ≡ span {ϕk}∞k=1

is attainable if there exists a solution u ∈ K of (4.6) such that

(4.8) lim
t→∞

‖u(t)− ψ‖L2 = 0.

THEOREM 4.3. Suppose α > 1 and also that a(t) ≥ 1/C for all t ∈ J . Then every
function ψ ∈ Y is attainable for problem (4.6). In turn, the set of attainable functions is
dense in L2.

Proof: We first show that every eigenfunction ϕk is attainable. For this purpose
consider the function

uk(t, x) = wk(t)ϕk(x),

which satisfies (4.6) if and only if wk is a solution of the ordinary differential equation

(4.9) a(t)tαw′ + µkw = 0, t ∈ J,

where µk > 0 is the eigenvalue associated to ϕk. By integration we get

w(t) = Const. exp
(
−
∫ t

1

µk

a(s)sα
ds

)
.
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Since α > 1 and a(s) ≥ 1/C in J , the integral is convergent, whence

lim
t→∞

w(t) exists and is finite.

It follows that the set of attainable limits of solutions of (4.9) is all of R. Hence for the
particular solution wk of (4.9) which has limit value one at infinity, we get

lim
t→∞

‖uk(t, ·)− ϕk(·)‖L2 = 0.

Finally, using the linearity of (4.6), we obtain (4.8) for every ψ ∈ Y .
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