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Abstract. We consider the strong maximum principle and the compact support principle for

quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear

operators and the nonlinearities involved. This allows us to give necessary and sufficient conditions

for the validity of both principles.

1. Introduction.

We are interested in the strong maximum principle and the compact support principle
for quasilinear elliptic differential inequalities, under generally weak assumptions on the
quasilinear operators in question. We consider in particular the canonical divergence
structure differential inequalities

div{A(|Du|)Du} − f(u) ≤ 0, u ≥ 0,(1.1)

and

div{A(|Du|)Du} − f(u) ≥ 0, u ≥ 0,(1.2)

in a domain D, possibly unbounded, of Rn, n ≥ 2. Here we assume throughout the paper
the following conditions on the operator A = A(t) and the nonlinearity f = f(u),

(A1) A ∈ C(0,∞),
(A2) t 7→ tA(t) is strictly increasing in (0,∞) and tA(t) → 0 as t → 0;
(F1) f ∈ C[0,∞),
(F2) f(0) = 0 and f is non–decreasing on some interval [0, δ), δ > 0.

Condition (A2) is a minimal requirement for ellipticity of (1.1)–(1.2). Furthermore, it
allows singular and degenerate behavior of the operator A at t = 0, that is at critical
points of u. We emphasize that no assumptions of differentiability are made on either A
or f when dealing with the canonical models (1.1) and (1.2).

By a solution of (1.1) or (1.2) in D we mean a non–negative function u ∈ C1(D) which
satisfies (1.1) or (1.2) in the distribution sense.

With the notation Ω(t) = tA(t) when t > 0, and Ω(0) = 0, we introduce the function

(1.3) H(t) = tΩ(t)−
∫ t

0

Ω(s)ds, t ≥ 0.
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Letting Ω−1(ω) be the inverse of the strictly increasing function Ω(t), then from Stieltjes
integration it is easy to see that

(1.4) H(t) =
∫ Ω(t)

0

Ω−1(ω)dω, t ≥ 0.

Therefore H is strictly increasing on [0,∞).
For the Laplace operator, that is when (1.1) takes the classical form

∆u− f(u) ≤ 0, u ≥ 0,

we have A(t) ≡ 1 and H(t) = 1
2 t2. Similarly, for the degenerate m–Laplace operator,

m > 1, we have A(t) = tm−2 and H(t) = (m − 1)tm/m, while for the mean curvature
operator, A(t) = 1/

√
1 + t2 and H(t) = 1− 1/

√
1 + t2.

It is also worth observing that (1.1), when equality holds, is precisely the Euler–
Lagrange equation for the variational integral

I[u] =
∫

D

{G(|Du|) + F (u)}dx, F (u) =
∫ u

0

f(s)ds,

where G and A are related by A(t) = G′(t)/t, t > 0. In this case H(t) = tG′(t) − G(t),
the pre–Legendre transform of G. Further comments and other examples of operators
satisfying (A1), (A2) are given in [6].

By the strong maximum principle for (1.1) we mean the statement that if u is a solution
of (1.1) with u(x0) = 0 for some x0 ∈ D, then u ≡ 0 in D.

We can now state our main results.

Theorem 1. In order for the strong maximum principle to hold for (1.1) it is necessary
and sufficient either that f(s) ≡ 0 for s ∈ [0, µ), µ > 0, or that f(s) > 0 for s ∈ (0, δ)
and

(1.5)
∫ δ

0

ds

H−1(F (s))
= ∞.

The background and literature for Theorem 1 is fairly complicated and deserves a
number of comments:

Necessity. For the case of the Laplace operator the necessity of (1.5) is due to Benilan,
Brezis and Crandall [1], while for the m–Laplacian it is due to Vazquez [8]. In these cases
we observe that (1.5) reduces respectively to∫ δ

0

ds√
F (s)

= ∞ and
∫ δ

0

ds

[F (s)]1/m
= ∞.
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For general operators satisfying (A1), (A2), necessity is due to Diaz [2, Theorem 1.4], see
also [6, Corollary 1].

Sufficiency. For the case of the Laplace operator and also for the m–Laplacian, the
result is again due to Vazquez [8], see also [2]. For general operators satisfying (A1), (A2),
sufficiency was proved in [6, Theorem 1] under an additional technical assumption.

Diaz, Saa and Thiel stated a slightly weaker version of Theorem 1, see [3, Theorem 6],
but with insufficient proof. It turns out that a rigorous treatment of the full sufficiency
result of Theorem 1, avoiding use of the technical assumption (2.5) of [6], is fairly tricky,
involving a new method for the solution of differential inequalities whose structure includes
driving and amplifying terms which reinforce each other. At the same time, the new proof
uses only standard calculus, requiring neither fixed point theory (as [6]) nor monotone
operator theory (as [8], [2], [3]). In this sense, it is closer to the original method of E.
Hopf than other more recent proofs. We hope that this technique could have further
applications as well.

In the next result we consider the situation when the integral in (1.5) is convergent.
Here the appropriate hypotheses are that u satisfies the converse inequality (1.2) and also
“vanishes” at ∞, rather than at some finite point x0 ∈ D.

More precisely, by the compact support principle for (1.2) we mean the statement that
if u is a solution of (1.2) in an exterior domain D, with u(x) → 0 as |x| → ∞, then u
has compact support in D.

Theorem 2. In order for the compact support principle to hold for (1.2) it is necessary
and sufficient that f(s) > 0 for s ∈ (0, δ) and

(1.6)
∫ δ

0

ds

H−1(F (s))
< ∞.

As in the case of the strong maximum principle it is worth commenting on the back-
ground and literature for Theorem 2.

Necessity. This was first shown in [6, Corollary 1] under the additional technical as-
sumption [6, (2.5)]. It should be noted that the proof is not at all easy.

Sufficiency. This is due to [6, Theorem 2], but see also [7] and the remarks following
the statement of Theorem 2 in [6]. For radially symmetric solutions of (1.2) sufficiency was
proved in [4] under the weaker assumption that F (s) > 0 for s ∈ (0, δ), see [4, Proposition
1.3.1].

If Theorem 2 were an exact analogue of Theorem 1, the conclusion of the compact
support principle would be that u ≡ 0 in D, but this would be incorrect since (1.2) admits
non–trivial compact support solutions under assumption (1.6), see [6, Theorem 3].

The results described above can be extended to a wider class of differential inequalities
by replacing div {A(|Du|)Du} by the more general operator Di{aij(x)A(|Du|)Dju} and
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f(u) by B(x, u, Du), where aij(x) is a positive definite symmetric matrix on D and where
B satisfies a condition of the form

(1.7) B(x, u, p) ≤ Const. |p|A(|p|) + f(u)

for x ∈ D, u ≥ 0 and all p ∈ Rn with |p| sufficiently small (reverse the inequality sign for
the compact support principle). These extensions are the second purpose of the paper.

In the next section we prove our main results for the canonical models (1.1) and (1.2),
while in Section 3 we consider the case of fully quasilinear inequalities

(1.8) Di{aij(x)A(|Du|)Dju} −B(x, u, Du) ≤ 0 (≥ 0)

(where the obvious summation convention is used).
Finally, in Section 4 we treat several special cases where the main proof reduces to

a simpler form. As a byproduct of this discussion we obtain a polynomial comparison
function for linear inequalities alternative to the classical exponential function of E. Hopf.

2. Proofs of Theorems 1 and 2.

We require several preliminary lemmas.

Lemma 1. (i) For any constant σ ∈ [0, 1] there holds

F (σu) ≤ σF (u), u ∈ [0, δ).

(ii) Let w = w(r) be of class C1(r0, r1) with w′(r) >. Then Ω ◦w′ is of class C1(r0, r1) if
and only if H ◦ w′ is of class C1(r0, r1), and in this case

{H(w′(r))}′ = w′(r){Ω(w′(r))}′ in (r0, r1).

To obtain (i), observe that σf(σu) ≤ σf(u) for u ∈ [0, δ), since f is non-decreasing.
Integrating this relation from 0 to u yields the result.

On the other hand, (ii) is an immediate consequence of (1.4).

Lemma 2. Suppose f(s) > 0 for 0 < s < δ and

(2.1)
∫ δ

0

ds

H−1(F (s))
= ∞.

Then for any positive numbers k, `, R, and for ε ∈ (0, δ), the ordinary differential
inequality

(2.2) [Ω(|v′|)]′ + k

r
Ω(|v′|) + `f(v) ≤ 0
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has a C1 solution v = v(r) in the interval [R/2, R], with

(2.3) v(R) = 0, v′(R) = −α < 0

and

(2.4) 0 < v < ε in [R/2, R),

provided α is sufficiently small.

In stating condition (2.1) we assume, without loss of generality, that the value δ is so
small that F (δ) ∈ H[0,∞). This is automatic for the Laplace and m–Laplace operators,
since for these cases H[0,∞) = [0,∞), but for the mean curvature operator there holds
H[0,∞) = [0, 1), which gives the restriction F (δ) < 1. The same remarks of course apply
to conditions (1.5) and (1.6).

Proof of Lemma 2. It is enough to treat the case ` = 1, since by Lemma 1(i) the integral∫ δ

0

ds

H−1(`F (s))

diverges if and only if (2.1) is satisfied.
The strategy for obtaining the required solution will be, first, to construct for each α > 0

a candidate v(r) for the solution of (2.2), having one of the following three properties:

(i) v(r) is defined on [R/2, R] and satisfies (2.3), (2.4),
(ii) v(r) is defined on some interval [R,R], R ∈ [R/2, R), satisfies (2.3),

(2.5) 0 < v < ε in (R,R)

and also v(R) = ε, or
(iii) v(r) is defined on some interval (R,R], R ∈ [R/2, R), satisfies (2.3), (2.5) and also

lim
r→R

v′(r) = −∞.

Step 1. Construction of v(r). We use a recursive continuation procedure, backwards
from the point r = R. The starting point will be the construction of an “initial” function
v = v1, defined to be the C1 solution of

(2.6) [Ω(|v′|)]′ + 2k

r
Ω(|v′|) = 0,

(2.7)1 v(R) = 0, v′(R) = −α.
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on the maximal interval I1 = (R1, R], R1 ∈ [R/2, R), for which both the inequalities

(2.8) 0 ≤ v < ε

and

(2.9)
k

r
Ω(|v′|) > f(v)

are satisfied.
To show that such a function v = v1 and maximal interval I1 exist, we observe by direct

integration that (2.6), (2.7)1 imply

(2.10) Ω(|v′|) = Cr−2k, v′ < 0,

where C = C1 = R2kΩ(α). Hence

(2.11) v′(r) = −Ω−1(Cr−2k)

from which v(r) is immediately obtained by quadrature (and the fact that v(R) = 0).
Also, either by (2.6) or (2.11), one sees that v is convex, whence v ≥ 0, v′ < 0 on I1. The
existence of I1 is now obvious, and moreover both v(R1) > 0 and v′(R1) < 0 exist (finite).

If R1 = R/2 or v(R1) = ε we stop, having obtained a solution of either type (i) or (ii),
in the latter case with R = R1.

The remaining possibility is that R1 > R/2, that (2.8) holds on the full interval [R1, R],
while (2.9) fails at r = R1, namely

k

R1
Ω(|v′(R1)|) = f(v(R1)).

In this case, the continuation switches to a new maximal interval J2 = (R2, R1], on which
the function v = v2 is defined as the solution of the problem

(2.12) [Ω(|v′|)]′ + 3f(v) = 0,

(2.13)2 v(R1) = v1(R1), v′(R1) = −α1 = v′1(R1) < 0,

subject to the conditions (2.8) and

(2.14)
k

r
Ω(|v′|) < 2f(v).

Here it is important to note that both (2.8) and (2.14) are satisfied at the “initial” point
R1 of J2.
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Again it must be shown that the solution v = v2 and the maximal interval J2 exist.
However, as in the case of (2.6), (2.7)1, the problem (2.12), (2.13)2 allows direct integra-
tion. Indeed, with the help of Lemma 1, (2.12) implies

[H(|v′|)]′ = 3f(v)v′ = 3[F (v)]′

and in turn
H(|v′|) = 3F (v) + const.

One then finds ∫ v(r) ds

H−1(3F (s) + const.)
= r + const.,

implicitly defining the solution v = v2(r). By (2.12) and the monotonicity of Ω it is easy to
see that v is convex as long as (2.8) holds, and even more, by using the “initial” conditions
(2.13)2, that v > 0 and v′ < 0. Thus again the existence of the maximal interval J2 follows
at once. Moreover it is clear that the end values v(R2) > 0 and v′(R2) < 0 exist.

If R2 = R/2 or v(R2) = ε we stop, again having attained (i) or (ii).
Otherwise, (2.14) fails at the left endpoint r = R2 > R/2 of J2, and the continuation

switches to a new maximal interval I3 = (R3, R2] on which the function v = v3 is defined
as the solution of the problem (2.6), (2.8), (2.9), with “initial” data

(2.7)3 v(R2) = v2(R2), v′(R2) = −α2 = v′2(R2) < 0

given at the right endpoint R2 of I3. Note again that (2.8) and (2.9) are satisfied at R2.
Thus, as before, the existence of the solution v = v3 and the maximal interval I3

are easily established, along with the convexity of v and the existence of the endvalues
v(R3) > 0 and v′(R3) < 0.

We continue this recursive switching procedure to successive maximal intervals

J4, I5, J6, . . .

such that the respective conditions (2.12), (2.13)i, (2.8) and (2.14) hold on Ji, i even, and
(2.6), (2.7)i, (2.8) and (2.9) hold on Ii, i odd.

The functions vi, i ≥ 1, are convex on the respective intervals I1, J2, I3, J4, . . . . Since
the continued function v is of class C1 in view of the matching conditions (2.7)i, (2.13)i

at the endpoints Ri, it follows that v is convex on the entire continuation, and so also
v > 0, v′ < 0 along the continuation.

The continuation stops if Ri = R/2 or v(Ri) = ε for some i ≥ 1, in which case either
(i) or (ii) is satisfied. Otherwise it continues indefinitely. In the latter case, the endpoints
Ri clearly have an accumulation point

R0 = lim
i→∞

Ri ≥ R/2.
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At the same time, v is convex on (R0, R], so that

v(Ri) → v(R0), v′(Ri) → v′(R0)

with v(R0) ≤ ε and v′(R0) < 0 or possibly v′(R0) = −∞. We assert that in fact
v′(R0) = −∞. Assuming this so, it follows that v is of one of the types (i), (ii) or
(iii).

Thus suppose v′(R0) is finite. Using (2.9) and (2.14) then gives (in the limit as i tends
to ∞)

Ω(|v′(R0)|) =
k

R0
f(v(R0) =

2k

R0
f(v(R0)).

It follows that f(v(R0)) = 0. But then by monotonicity of f we get f(u) = 0 for 0 ≤
u ≤ v(R0). This is a contradiction since it implies that I1 is the only interval in the
continuation (see (2.9)).

This completes the construction of the function v(r). Note however that it has not yet
been shown that inequality (2.2) is satisfied. We shall do this in the final Step 3.

Step 2. We show next that if α is sufficiently small, then cases (ii), (iii) cannot occur.
To this end, observe that (2.12) holds on any interval Ji, i ≥ 2 even, while on any interval
Ii = (Ri, Ri−1], i ≥ 3 odd,

−[Ω(|v′|)]′ = 2k

r
Ω(|v′|) =

2k

r
· Cr−2k ( by (2.10))

where
C = Ci = R2k

i−1Ω(|v′(Ri−1)|) = R2k
i−1 ·

2Ri−1

k
f(v(Ri−1))

since (2.14) fails at the left endpoint Ri−1 of Ji−1. Consequently,

−[Ω(|v′|)]′ = 4
(

Ri−1

r

)2k+1

f(v(Ri−1)) ≤ 22k+3f(v(Ri−1)) ≤ 22k+3f(v)

since f is non-decreasing on [0, ε] and v(r) > v(Ri−1) on Ii. Hence at any point r ∈ (R,R1],
whether in an interval of type I or of type J , i ≥ 2, we have

−[Ω(|v′|)]′ ≤ (µ− 1)f(v), µ = 22k+3 + 1 > 9,

that is, using Lemma 1,

(2.15) [H(|v′|)]′ ≥ (µ− 1)[F (v)]′, R < r ≤ R1.

Integrating (2.15) on [r, R1], we get

H(|v′(r)|) ≤ (µ− 1)F (v(r)) + H(α1),
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or, inverting H,

(2.16) |v′(r)| ≤ H−1((µ− 1)F (v(r)) + H(α1)), R < r ≤ R1.

It follows that |v′| is bounded on the continuation (recall v ≤ ε), so that case (iii) cannot
occur.

Consider next case (ii), that is (2.5) holds and v(R) = ε. Let α0 > 0 be such that

(2.17) α1 < 2ε/R.

whenever α ≤ α0. This can be done since (recalling that α1 is defined in condition (2.13)2)

(2.18)

α1 = |v′1(R1)| = Ω−1(C1R
−2k
1 ) by (2.11)

= Ω−1
(
(R/R1)2kΩ(α)

)
≤ Ω−1

(
22kΩ(α)

)
≤ 22kα

by Lemma 1 with F replaced by Ω and with σ = 2−2k. Then for α ≤ α0 we have by the
convexity of v and by (2.17)

(2.19) v(R1) =
∫ R

R1

|v′|ds ≤
∫ R

R1

α1 ds ≤ α1R/2 < ε = v(R).

In turn, necessarily R < R1.
We now divide into two cases, first, when f(u) ≡ 0 for 0 < u < τ , for some τ ∈ (0, δ],

and second, when f(u) > 0 for 0 < u < δ. In the first instance, assuming without loss of
generality that δ = τ , it is clear that (2.9) necessarily holds on the entire continuation, so
that R1 = R, a contradiction.

Thus we assume from here on (the main case) that f(u) > 0 for 0 < u < δ. Conse-
quently F (u) is strictly increasing on 0 ≤ u < δ and so has a strictly increasing inverse
F−1 on the interval [0, F (δ)). This being the case, we may add a further condition on α0,
namely that

(2.20) H(α1) < F (ε) when α < α0.

For simplicity in what follows, put v1 = v(R1), F1 = F (v1), H1 = H(α1). We now
define (the purpose will appear later)

(2.21) γ =
{

v1 if F1 ≥ H1,

F−1(H1) if F1 < H1,

(in the second line, recall that H1 < F (ε) < F (δ) so that F−1(H1) is well defined).
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We claim that

(2.22) v1 ≤ γ < ε.

When γ = v1 this is obvious since v1 < ε by (2.19). On the other hand, in case γ =
F−1(H1) we have F (γ) = H1 > F1 so v1 < γ, while also F (γ) = H1 < F (ε) by (2.20),
thus yielding γ < ε. Note also that F (γ) ≥ H1 in both cases of (2.21).

Now let ρ be defined by γ = v(ρ), this being possible because of (2.22) and the facts
that v(R) = ε and v′ < 0. Clearly R < ρ ≤ R1.

Then for R < r ≤ ρ we have

(2.23) F (v(r)) ≥ F (v(ρ)) = F (γ) ≥ H1.

It follows from (2.16) and (2.23) that

|v′| < H−1(µF (v)), R < r ≤ ρ.

In turn, since µ > 1, we see by the first part of Lemma 1, with σ = 1/µ, that

(2.24) |v′| < H−1(F (µv)), R < r ≤ ρ.

(Here, one can assume without loss of generality that ε < δ/µ.) Integrating from R to ρ
then yields ∫ ε

γ

dv

H−1(F (µv))
≤ R

2

after changing to the natural variable v of integration. A further change of variables
s = µv gives finally

(2.25)
∫ µε

µγ

ds

H−1(F (s))
≤ µR

2
.

We assert that γ → 0 as α → 0. Indeed if γ = v1 then by (2.19) we have γ ≤ α1R/2.
But from (2.18) one obtains α1 → 0 as α → 0, giving the required result. Next, if
γ = F−1(H1) the assertion is obvious, since H1 = H(α1) → 0 as α → 0.

This being shown, the principal divergence condition (2.1) applied to (2.25) yields an
immediate contradiction as α, and so γ, tends to 0. Thus case (ii) also cannot happen,
and the constructed function v is therefore of type (i).

Step 3. It remains to show that v satisfies the inequality (2.2) in [R/2, R]. First, on
any interval of type I we have from (2.6)

[Ω(|v′|]′ + k

r
Ω(|v′|) + f(v) = −k

r
Ω(|v′|) + f(v) < 0,
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where at the last step we have used (2.9). On the other hand, on any interval of type J
we see from (2.12) that

[Ω(|v′|)]′ + k

r
Ω(|v′|) + f(v) =

k

r
Ω(|v′|)− 2f(v) < 0

by (2.14). This completes the proof of the lemma.

Lemma 3 (Weak comparison principle). Let u and v be respective solutions of (1.1) and
(1.2) in a bounded domain D. Suppose also that u and v are continuous in D, with v < δ
in D and u ≥ v on ∂D. Then u ≥ v in D.

For proof, see [6, Lemma 3].
Now we are ready to prove Theorem 1. We first show that the function v(x) = v(r),

r = |x|, where v is given by Lemma 2, satisfies the differential inequality (1.2) in ER =
{x ∈ Rn : R/2 ≤ |x| ≤ R}. This is a consequence of the calculation

(2.26)
div

{
A(|Dv|)Dv

}
− f(v) =div

{
A(|v′|)v′x/r

}
− f(v)

=−
{
Ω(|v′|)

}′ − (n− 1)
r

Ω(|v′|)− f(v) ≥ 0,

where we recall that v′ < 0 and use Lemma 2 with k = n− 1, ` = 1.
This being shown, the proof of sufficiency is now exactly the same as in the standard

demonstration of the strong maximum principle (see [5, proof of Theorem 3.5 on page
35), since the comparison function v satisfies the conditions, see [5, proof of Lemma 3.4
on page 34]:

(i) v > 0 in ER,
(ii) v = 0 when |x| = R,
(iii) ∂v/∂ν = v′ < 0 when |x| = R, where ν is the outer normal to ∂ER,
(iv) v < ε when |x| = R/2,

where ε, R > 0 can be taken arbitrarily small and the origin of coordinates can be chosen
arbitrarily in D. Note that the use of the weak maximum principle (Corollary 3.2 of [5])
is here replaced by application of Lemma 3. This completes the proof of the sufficiency
part of Theorem 1.

As remarked in the introduction, the necessity is due to Diaz. Hence Theorem 1 is
proved.

Remark. The necessity of condition (1.5) can be obtained under weaker hypothesis than
(F2). In fact, it is enough to replace (F2) by

(F2)′ f(0) = 0 and F (s) > 0 for s ∈ (0, δ).
This is because the principal construction required for Diaz’ proof uses only condition
(F2)′; see also [6, construction of the function w = w(r), r = x1, in the proof of Theorem
2].
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Proof of Theorem 2. Sufficiency was shown in [6, Theorem 2].
To prove necessity, suppose (1.6) fails. We let u be a non–trivial solution of (2.1) in

the domain DR = {x ∈ Rn : |x| > R} such that u(x) → 0 as |x| → ∞. (The existence
of such a solution u, indeed with equality in (2.1), is guaranteed by Theorem 3 of [6].)
By Theorem 1, since (1.5) must hold it is clear that u > 0 in DR, but this violates the
compact support principle. Hence (1.6) is necessary, completing the proof of Theorem 2.

Remark. The simplicity of this proof is deceptive. Theorem 3 of [6] in particular is quite
difficult to prove: one would wish a simpler demonstration in which the required solution
of (2.1) in DR is obtained by some more elementary means.
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3. Fully quasilinear case.

Let D be a domain in Rn. Let {aij(x)}, i, j = 1, · · · , n, be a continuously differentiable,
symmetric coefficient matrix on D, which is uniformly elliptic in the sense that

aij(x)ξiξj ≥ λ|ξ|2, x ∈ D, ξ ∈ Rn,

for some positive number λ. Moreover, let B(x, u, p) be a continuous function on D ×
R+

0 × Rn.
Consider the differential inequality

(3.1) Di{aij(x)A(|Du|)Dju} −B(x, u, Du) ≤ 0, u ≥ 0, x ∈ D.

We shall suppose that the operator A = A(t) satisfies the following strengthened versions
of (A1), (A2), namely
(A1)′ A ∈ C1(0,∞),
(A2)′ Ω′(t) > 0 for t > 0, and Ω(t) → 0 as t → 0;

we also continue to assume that the nonlinearity f obeys (F1) and (F2).

Theorem 3 (Strong maximum principle). Assume that there exists a constant κ > 0 such
that

(3.2) B(x, u, p) ≤ κΩ(|p|) + f(u)

for x ∈ D, u ≥ 0, and all p ∈ Rn with |p| < 1. Suppose finally that either f(s) ≡ 0 for
s ∈ [0, τ), τ > 0, or else (1.5) holds.

If u is a C1 solution of (3.1) with u(x0) = 0 for some x0 ∈ D, then u ≡ 0 in D.

This result was obtained in [6, Theorem 1′] under the additional technical assumption
[6, (2.5)]. For comments on earlier work, see [6, Section 4].

To obtain Theorem 3 we require a slightly strengthened version of Lemma 2.

Lemma 4. Lemma 2 holds with (2.4) replaced by

(3.3) 0 < v < ε, −1 < v′ < 0 in [R/2, R)

Proof. Without loss of generality we can assume that ε > 0 is so small that

(3.4) F (ε) < 2−2kH(1).

We assert that (3.3) then holds, provided that α is made even smaller if necessary, so that
α < 2−2k.

There are two cases: first, when f(u) ≡ 0 for 0 < u < τ , for some τ ∈ (0, δ], and
second, when f(u) > 0 for 0 < u < δ. In the first instance, assuming without loss of
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generality that δ = τ , it is clear that (2.9) necessarily holds on the entire continuation, so
that R1 = R/2. Then, as in (2.18), we get

|v′(R/2)| ≤ 22kα < 1.

Hence (3.3)2 follows since v′ < 0 and v is convex.
In the second case, we find as in (2.24)

|v′(R/2)| ≤ H−1(F (µε)) < 1

by (3.4). This completes the proof of the lemma.
Proof of Theorem 3. Let O be an arbitrary origin in D. Put ER = {x ∈ Rn : R/2 ≤
|x| ≤ R} and define

Λ = max eigenvalue of {aij(x)} in ER, a = max |Di aij(x)| in ER.

It is easy to see that

Di

(
aij(x)

xj

r

)
=

(
Di aij(x)

)xj

r
+

aij

r

(
δij −

xixj

r2

)
,

so
max
ER

|Di

(
aij(x)

xj

r

)
| ≤ a +

n− 1
r

Λ.

Let v = v(r), r = |x|, be the function given by Lemmas 2, 4. Then we have −1 < v′ < 0
in ER, and in turn

Di{aij(x)A(|Dv|)Djv} − κΩ(|Dv|)− f(v)

= −Di

{
aij(x)

xj

r

}
Ω(|v′|)− aij(x)

xixj

r2
{Ω(|v′|)}′ − κΩ(|v′|)− f(v)

≥ −aij(x)
xixj

r2
{Ω(|v′|)}′ −

(
a +

n− 1
r

Λ + κ

)
Ω(|v′|)− f(v)

≥ −aij(x)
xixj

r2

{
[Ω(|v′|)]′ + k

r
Ω(|v′|) +

f(v)
λ

}
,

where k = [(n− 1)Λ + (a + κ)R]/λ. Now from Lemma 4 with ` = 1/λ, together with the
main assumption (1.5), we obtain

(3.5) [Ω(|v′|)]′ + k

r
Ω(|v′|) +

f(v)
λ

≤ 0,

so in turn

(3.6) Di{aij(x)A(|Dv|)Djv} − κΩ(|Dv|)− f(v) ≥ 0, v ≥ 0,
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in ER.
We next require a comparison lemma corresponding to Lemma 3, but applying to the

more general inequality (3.1).

Lemma 5 (Comparison principle). Let u and v be respectively solutions of (3.1) and (3.6)
in a bounded domain D. Suppose that |Du|+ |Dv| > 0 in D; that u and v are continuous
in D; and that

v < δ in D, u ≥ v on ∂D.

Then u ≥ v in D.

The main point of Lemma 5 is that if |Du| + |Dv| > 0 in D, then just as for Lemma
3 it is not necessary to have ellipticity at the value p = 0. For proof of Lemma 5, see [6,
Section 5].

The rest of the proof of Theorem 3 is now the same as the sufficiency part of Theorem 1,
the only change being that at the last step we rely on Lemma 5 instead of Lemma 3.

There is a corresponding compact support principle for the inequality

Di{aij(x)A(|Du|)Dju} −B(x, u, Du) ≥ 0, u ≥ 0,

where for some constant κ > 0,

B(x, u, p) ≥ −κΩ(|p|) + f(u)

for x ∈ D, u ≥ 0, and all p ∈ Rn with |p| < 1. For the statement and proof of this
principle, see [6, Theorem 2′].

4. Special cases.

4.1 Consider the linear inequality

(4.1) Di{aij(x)Dju}+ bi(x)Diu) + c(x)u ≤ 0, u ≥ 0,

for x ∈ D. This is the special case of (3.1) with A(t) ≡ 1, B(x, u, p) = −bi(x)pi − c(x)u.
Here we can apply the result Theorem 3, assuming

κ = sup
D

|bi(x)| < ∞, c = − inf
D
{c(x), 0} < ∞,

and defining f(u) = cu. Then Ω(t) = t, H−1(t) =
√

2t and F (u) = 1
2cu2, so that (3.2)

and (1.5) hold as required. This gives the strong maximum principle for (4.1), essentially
the classical theorem of E. Hopf, and moreover leads us to expect that the main proof can
be simplified for the special linear case.
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In fact, the construction of the function v = v(r) in Step 1 of Lemma 2 suggests that
v can be obtained directly by solving equation (2.6). This gives at once

(4.2) v(r) =
αR

θ − 1

[(
R

r

)θ−1

− 1

]
,

where θ = 2k ; here we assume k > 1/2 so that θ > 1. Then Ω(|v′|) = |v′| = α (R/r)2k

and so

[Ω(|v′|)]′ + k

r
Ω(|v′|) +

1
λ

f(v)

= −2kα

R

(
R

r

)θ+1

+
kα

R

(
R

r

)θ+1

+
cαR

λ(θ − 1)

[(
R

r

)θ−1

− 1

]

≤ α

r

(
R

r

)2k [
cr2

λ(θ − 1)
− k

]
≤ 0,

provided that

(4.3) R2 ≤ k(2k − 1)
λc

,

that is, (3.5)–(3.6) hold under the conditions (4.3) and

(4.4) k = (n− 1)
Λ
λ

+ (a + κ)
R

λ
.

Thus the polynomial comparison function (4.2) can be used for the linear inequality (4.1),
alternative to the standard exponential function, see [5, page 34],

v(r) = ε
(
e−αr2

− e−αR2)
.

4.2 A similar simplification can be used for the canonical inequality

(4.5) ∆mu + f(u) ≤ 0, u ≥ 0,

for the m–Laplace operator, m > 1. For our present purpose, we assume also that

(4.6) f(u) ≤ cum−1,
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the borderline case for (1.5).
The comparison function v = v(r) again can be taken in the form (4.2), with now

θ =
2k

m− 1
, k >

m− 1
2

.

Then Ω(|v′|) = |v′|m−1 = αm−1 (R/r)2k
, so as above we get

[Ω(|v′|)]′ + k

r
Ω(|v′|) +

1
λ

f(v) ≤ αm−1

r

(
R

r

)2k [
crm

λ(θ − 1)m−1
− k

]
≤ 0

provided that

(4.7) R ≤ (k/λc)1/m (θ − 1)1/m′
.

Thus to obtain (2.26) it is enough to have (4.7) and k = max{n− 1, m− 1}.
In summary, for the borderline case (4.6) of inequality (4.5), we get an elementary proof

of Vazquez’ strong maximum principle, avoiding the delicate arguments of Section 2 or of
[8].

Remark. It is easy to see that the simple comparison function (4.2) does not suffice for
general operators or for more complicated nonlinearities. This observation indicates the
need for the new construction of v = v(r) used in the proof of Lemma 2.

Acknowledgement. This work is partially supported by CNR, Progetto Strategico Modelli
e Metodi per la Matematica e l’Ingegneria, by the Italian Ministero della Università e
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