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In a recent paper, Erbe and Tang provide a striking new identity applying to radial

solutions of the quasilinear equation

(1.1) ∆mu + f(u) = 0,

see Proposition 1 below. Here, as usual, ∆m denotes the degenerate m-Laplace operator

div(|Du|m−2Du), m > 1, and f(u) is a continuously differentiable function defined for

0 < u < ∞.

The principal application in their paper is to the uniqueness of the Dirichlet problem

in a ball B, with u = 0 on ∂B and u > 0 in B. Here, with the help of their identity, we

consider the complementary problem of uniqueness of radial ground states of (1.1), that

is, non-negative, non-trivial radially symmetric solutions on Rn such that u = u(x) → 0

as |x| → ∞. This problem, like that considered by Erbe and Tang, has exercised many

researchers in the past decade, principally in the case when f(u) is negative for small u

and superlinear for large u; see in particular [CL], [Co], [CEF1], [Kw], [M], [MS], and most

recently [CEF2], when m = 2, n ≥ 3; and [C2] when 1 < m ≤ 2. Other non-linearities,

having sublinear behavior for large u, have been treated in [PS1], [PS2] and [FLS].

In this paper we shall consider the general case when 1 < m < ∞, 2 ≤ n < ∞, see

Theorem 1 of Section 2; in fact the dimension n can be treated as a real parameter n > 1,

c.f. the remark following equation (2.1).

Our results apply in particular to the important canonical nonlinearity

(1.2) f(u) = −up + uq,

where

(1.3) 0 < p < q < σ
1
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and σ is the Sobolev exponent

(1.4) σ =
(m− 1)n + m

n−m
if m < n; σ = ∞ if m ≥ n.

Previous results for this nonlinearity have been confined for the most part to various

superlinear cases with p = 1 and m ≤ 2, as noted above, and to the ”sublinear” case

q ≤ m − 1 when m 6= 2. For a description of the range of exponents p, q which are

explicitly covered here, see Theorems 2, 2′ below; Theorem 2 in particular shows that,

for σ > 1, uniqueness always holds for the subset of (1.3) where p ≤ σ − 1.

Corresponding work on the existence of ground states of (1.1) for the superlinear case

can be found in [C1] and for the sublinear case in [FLS]. Moreover for the Laplace operator

Kaper and Kwong have considered nonlinearities of the form (1.2) with 0 ≤ p < q ≤ 1.

The above results also extend to more general equations than (1.1), namely those of

the form

(1.5) div(A(|Du|)Du) + f(u) = 0,

where A ∈ C1(0,∞). This extension is the second principal goal of the paper.

For ρ > 0 define

Ω(ρ) = ρA(ρ), G(ρ) =
∫ ρ

0

Ω(ρ)dρ.1

We suppose only the following conditions on the operator A:

(1) Ω′(ρ) > 0 for ρ > 0; Ω(ρ) → 0 as ρ → 0,

(2) Ω(ρ) ≤ Const. Ω′(ρ) for ρ near 0.

(3)
ρΩ(ρ)
G(ρ)

is (non-strictly) increasing for ρ > 0,

Note from (1) that A,Ω, G are positive for ρ > 0 (the integral for G being well defined

since Ω is bounded for ρ near 0). Moreover, since Ω,Ω′ (i.e. G′, G′′) are positive for

1It is interesting that (1.5) is then the Euler-Lagrange equation for the variational problem

δ

∫
{G(|Du|)− F (u)}dx = 0,

where F (u) =
∫ u
0 f(s)ds.
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ρ > 0, the quasilinear equation (1.5) is elliptic when Du 6= 0 though possibly degenerate

at Du = 0.

For the operator A, we define the critical constant

(1.6) m = inf
ρ>0

ρΩ(ρ)
G(ρ)

= lim
ρ→0

ρΩ(ρ)
G(ρ)

.

It is obvious that G(ρ) < ρΩ(ρ) for ρ > 0, since Ω is an increasing function. Hence m ≥ 1.

With the assumptions (1), (2), (3) on the operator A, Theorems 1, 2, 2′ then apply

equally to the more general equation (1.5), with the constant σ in Theorems 2, 2′ being

given exactly as before in terms of m and n.

We note that conditions (1)–(3) hold, for example, for the operators

A(ρ) = ρm−2

A(ρ) = ρm−2(1 + cρα),

A(ρ) = ρm−2(m + ρ)eρ,

A(ρ) =
1

ρ log 1
ρ

(
1 +

1
log 1

ρ

)
,

(m > 1, as in (1.1))

α > 0, c > 0, m > 1,

m > 1,

0 < ρ < 1,

and so forth. For the last example one finds m = 1, showing that all values m ≥ 1 are

possible.2

In this regard, it is shown in Section 2 that condition (2) is automatically satisfied

whenever m > 1. Thus, except for the anomalous case m = 1, this somewhat arbitrary

appearing condition can be dropped.

In Section 6 we extend the exponent range (1.3) to the set

(1.7) −1 < p < q < σ,

the conclusions for this case being given in Theorems 3, 4 and 4′. These results are new

even in the classical case of the Laplace operator. In particular, when σ > 1 uniqueness

holds in the subset of (1.7) where p ≤ σ − 1, q ≥ 0.

2One checks that Ω(ρ) = 1
log 1

ρ

(
1 + 1

log 1
ρ

)
, so that Ω′ > 0 for ρ > 0 while also Ω → 0, Ω′/Ω →

∞ as ρ → 0. Moreover

G = ρ/ log
1

ρ
,

ρΩ

G
= 1 + 1/ log

1

ρ
;

hence m = 1 and ρΩ/G is increasing.
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It should be noted in this connection that when n > m and q ≥ σ there are no solutions

of either (1.1) or (1.5) corresponding to the canonical nonlinearity (1.2), see [NS], pages

180-181.

Remarks. We emphasize that uniqueness of radial ground states is here understood

subject to an arbitrary translation of the origin. It is important to note moreover that

our results apply equally to radially symmetric ”single bump” compact support ground

states.

As background and motivation for the study fof radial ground states of (1.1), we note

that by the Gidas–Ni–Nirenberg theorem positive ground states of (1.1) corresponding

to the Laplace operator (m = 2) are necessarily radially symmetric about some origin

O ∈ Rn, provided that the function f = f(u) is appropriately regular near u = 0 and

f ′(0) < 0. A generalization of this result to elliptic quasilinear equations of the form

(1.5), as well as to compact support ground states and to more general nonlinearities f ,

also holds. For details, see the forthcoming paper [SZ].

The methods developed here for the study of the ground state problem can be applied

also for the exterior Neumann problem. In particular, consider non-negative, non-trivial

radial solutions of (1.5) in the exterior of the ball B0 of radius R0, subject to the boundary

conditions
∂u

∂n
= 0 on ∂B0, u(r) → 0 as r →∞.

The question of uniqueness of solutions of this problem is treated in Section 7, the results

being exactly analogous to those described earlier for the ground state problem.

2. Main results.

We consider radial ground states of the problem

(1.5) div(A(|Du|)Du) + f(u) = 0, x ∈ Rn,

namely radial distribution solutions of class C1(Rn) such that u ≥ 0, u 6≡ 0, u(x) → 0 as

|x| → ∞. The operator A is assumed, without further mention, to obey conditions (1)–

(3) given in the introduction, while the function f(u), 0 ≤ u < ∞, satisfies the following

assumptions:

(a) f is continuous on [0,∞), and f(0) = 0;
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(b) f is continuously differentiable on (0,∞);

(c) there exists a > 0 such that f(a) = 0 and

f(u) < 0 for 0 < u < a,

f(u) > 0 for a < u < ∞.

Conditions (a) and (b) can be weakened somewhat, at the expense of a slightly more

sophisticated treatment, see Section 6.

We observe that radial solutions u = u(r) of (1.5) satisfy the ordinary differential

equation

(A(|u′|)u′)′ + n− 1
r

A(|u′|)u′ + f(u) = 0

for r > 0, or equivalently

(2.1) [rn−1A(|u′|)u′]′ + rn−1f(u) = 0;

of course also u′(0) = 0. The expression rn−1A(|u′|)u′ is then of class C1[0,∞), see

Section 1.1 of [FLS]. Finally, n naturally can be considered a real parameter, with n > 1.

We shall typically be dealing with solutions u(r) of (2.1) having the property u′(r) ≤ 0.

Setting ρ = ρ(r) = |u′(r)|, equation (2.1) can then be written

(2.2) [rn−1Ω(ρ)]′ = rn−1f(u).

Let H(ρ) be the partial Legendre transform of G(ρ), namely

H(ρ) = ρΩ(ρ)−G(ρ), ρ ≥ 0,

where it is convenient in what follows to define Ω(0) = G(0) = 0 Then by Lemma 1.1.2

of [FLS] we have along solutions u of (2.1)

(2.3)
d

dr
[H(ρ) + F (u)] = −(n− 1)

ρΩ(ρ)
r

.

Next introduce the important function

(2.4) P (r, u, ρ) = rn [H(ρ) + F (u)]− nrn−1Ω(ρ)K(u),
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defined for r ≥ 0, ρ ≥ 0, u > 0 ( 6= a), where

K(u) = F (u)/f(u) and F (u) =
∫ u

0

f(τ)dτ.

The following proposition is due to Erbe and Tang in the special case when A(ρ) = ρm−2

(degenerate Laplace operator).

Proposition 1. Let u = u(r) be a non-negative solution of (2.1) with u′(r) ≤ 0. Then,

putting ρ = ρ(r) = |u′(r)|, we have

d

dr
P (r, u(r), ρ(r)) = nrn−1ρΩ(ρ)

{
K ′(u)− G(ρ)

ρΩ(ρ)
+

1
n

}
for all r > 0 such that u(r) 6= 0, a. [Here K ′(u) means dK(u)/du.]

Proof. By (2.2) and (2.3) we have

d

dr
P (r, u(r), ρ(r)) = rn−1 {n [H(ρ) + F (u)]− (n− 1)ρΩ(ρ)}

− nrn−1Ω(ρ)K ′(u)u′ − nrn−1f(u)K(u).

Simplification of this gives Proposition 1.

Note that the identity in Proposition 1 also holds when u′(r) > 0, provided P is defined

instead as rn[H(ρ) + F (u)] + nrn−1Ω(ρ)K(u).

Theorem 1. Equation (1.1), and more generally equation (1.5) with m defined by (1.6),

admits at most one radial ground state if conditions (a), (b), (c) hold and

(2.5)
d

du

[
F (u)
f(u)

]
≥ n−m

nm
for u > 0, u 6= a.

Remarks. As noted in the introduction, uniqueness of ground states is here understood

subject to arbitrary translations of the origin. When 1 ≤ m < n, the right side of (2.5)

is the reciprocal of the Sobolev exponent for the space W 1,m(Rn).

Theorem 2. Let σ > 1, where σ is defined by (1.4). Equation (1.1), and equally equation

(1.5), then admits at most one radial ground state when

(2.6) f(u) = −up + uq
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and

(2.7) 0 < p ≤ σ − 1, p < q < σ.

Moreover there exists p0 = p0(σ) ∈ (σ− 1, σ) and q0 = q0(p, σ) ∈ (σ− 1, σ) such that the

same conclusion holds in the additional range

(2.8) σ − 1 < p < p0(σ), p < q ≤ q0(p, σ)

(p0, q0 are respectively solutions of quadratic and cubic equations, with coefficients de-

pending respectively on σ, and on p, σ).

Recall that when n ≤ m the value σ = ∞ is to be used, with the natural interpretation

that (2.7) is replaced by 0 < p < q < ∞ while (2.8) is null. In fact, in this case one

can even allow exponential growth to the function f(u) as u →∞. We shall discuss this

possibility in a forthcoming paper [PS].

When

m > max
{

1,
2n

n + 2

}
(and in particular when m ≥ 2 or n ≤ 2), it is easy to check that σ > 1. On the other

hand, for 1 < m < 2 and for appropriate dimensions n > 2 it can happen that σ < 1, and

even that σ is arbitrarily near zero. For these cases, the following result complements

Theorem 2.

Theorem 2′. Let 1/3 < σ ≤ 1. There exist p0 = p0(σ) ∈ (0, σ) and q1 = q1(p, σ) ∈ (0, σ)

such that equations (1.1) and (1.5) admit at most one ground state when f is given by

(2.4) and

0 < p < p0, p < q ≤ q1.

It is not known whether uniqueness holds in the entire range 0 < p < q < σ, though

when m = 2 and q > 1 a related result appears in recent work of Cortázar, Elgueta and

Felmer [CEF2].

We conclude the section with a simple lemma showing that condition (2) is not needed

when m > 1.
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Lemma. Suppose m > 1. Then

Ω′(ρ) ≥ m− 1
ρ

Ω(ρ), ρ > 0.

Proof. By (3) and the fact that A ∈ C1(0,∞), we have for ρ > 0

0 ≤
[
ρΩ(ρ)
G(ρ)

]′
=

[ρΩ′(ρ) + Ω(ρ)]G(ρ)− ρΩ(ρ)2

G(ρ)2
.

Hence

Ω′(ρ) ≥ 1
ρ

[
ρΩ(ρ)
G(ρ)

− 1
]

Ω(ρ) ≥ m− 1
ρ

Ω(ρ)

by (1.6), as required.

3. Proof of Theorem 1. Part I.

We assume throughout, without further mention, that (1), (2), (3) and (a), (b), (c)

hold. It is of course enough to treat the case of equation (1.5).

In the course of the proof we shall use various results of [FLS], this being allowable

since the functions A(ρ) and f(u) here satisfy the general conditions required in [FLS],

namely that f is continuous on [0,∞) and f(0) = 0; that A is continuous on (0,∞) and

Ω(ρ) → 0 as ρ → 0; and Ω is strictly increasing for ρ > 0.

It is well known that any radial ground state u = u(r) of (1.5) has the property

u′(r) < 0 as long as r > 0, u(r) > 0; see [FLS], Proposition 1.2.6 (i), and note that

F (u) < 0 at the only place, namely u = a, where u > 0 and f(u) = 0. In turn, one

may introduce the inverse function t = t(u) of u = u(r), defined for 0 < u < u(0). Here

necessarily u(0) > a by [FLS], Lemma 1.2.6 (ii).

The following result is due to Erbe and Tang in the special case when A(ρ) = ρm−2.

Lemma 3.1. Let u1, u2 be two radial ground states of (1.5), with respective inverses

t1(u), 0 < u < α1 = u1(0), and t2(u), 0 < u < α2 = u2(0). Put

ρ1(r) = |u′1(r)|, ρ2(r) = |u′2(r)|,

Ω1(u) = Ω (ρ1(t1(u))) , Ω2(u) = Ω (ρ2(t2(u)))

and3

T = T12(u) =
(

t1
t2

)n−1 Ω1(u)
Ω2(u)

, 0 < u < α = min(α1, α2).

3In this formula we have written t1, t2 rather than t1(u), t2(u). Similar notational abbreviations will

be used frequently in the sequel.
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Then for a < u < α we have (with ′ = d/du)

T ′12(u) > 0 if and only if t′2(u) < t′1(u),

while for 0 < u < a

T ′12(u) > 0 if and only if t′2(u) > t′1(u).

Proof. By logarithmic differentiation

(3.1)

1
T

dT

du
=

d

du
log T =

d

du
log

(
tn−1
1 Ω1(u)

)
− d

du
log

(
tn−1
2 Ω2(u)

)

=
1

rn−1Ω(ρ)
d

dr

[
rn−1Ω(ρ)

] dr

du

∣∣∣∣ρ=ρ1(r), r=t1(u)

ρ=ρ2(r), r=t2(u)

=
1

ρΩ(ρ)

∣∣∣∣ρ=ρ2(t2(u))

ρ=ρ1(t1(u))

· f(u),

where in the last step we have again used the fundamental equation (2.2) and the fact

that u′(r) < 0 when 0 < u < α.

We observe that ρΩ(ρ) is an increasing function by assumption (1), and moreover that

ρ2(t2(u)) = −1/t′2(u), ρ1(t1(u)) = −1/t′1(u).

Thus ρ2(t2(u)) > ρ1(t1(u)) if and only if t′2(u) > t′1(u). Hence dT/du has the same

sign as f(u) if and only if t′2(u) < t′1(u). This completes the proof, once we note that

f(u) > 0 for a < u < α and f(u) < 0 for 0 < u < a.

Lemma 3.2. Let u = u(r) be a radial ground state of (1.5), and set ρ = |u′(r)|. Then

(3.2) rn−1Ω(ρ) → finite limit λ ≥ 0

and

(3.3) lim inf
r→∞

rn[H(ρ) + F (u)] = 0.



10 PATRIZIA PUCCI AND JAMES SERRIN

Proof. The first result is just Lemma 3.6.1 of [FLS]. We indicate the proof. By (2.2)

[rn−1Ω(ρ)]′ = rn−1f(u(r)) ≤ 0 when u(r) < a.

Hence rn−1Ω(ρ) is non-increasing when r is so large that u(r) < a, i.e. in the interval

(r0,∞), where u(r0) = a. This proves (3.2).

Next by (3.2) we see that Ω(ρ) → 0 as r → ∞. Thus by the ellipticity condition (1)

also ρ → 0. Since also u(r) → 0, it follows that

H(ρ) + F (u) → 0 as r →∞.

By integration of (2.3) we thus obtain

(3.4) H(ρ) + F (u) = (n− 1)
∫ ∞

r

ρ(s)Ω(ρ(s))
s

ds

so that in particular H(ρ) + F (u) ≥ 0 for all r. Hence

0 ≤ rn[H(ρ) + F (u)] ≤ rnH(ρ)

in (r0,∞), since F (u) < 0 for u ≤ a. In turn

0 ≤ rnH(ρ) = rn[ρΩ(ρ)−G(ρ)]

≤ rnρΩ(ρ) since G ≥ 0

≤ (λ + 1)rρ by (3.2),

for r sufficiently large. But

lim inf
r→∞

rρ = 0.

In fact, otherwise,

ρ ≥ Const./r for large r,

which is impossible since ρ ∈ L1[0,∞). Indeed,

0 ≤ u(r) = u(0) +
∫ r

0

u′(s)ds = u(0)−
∫ r

0

ρ(s)ds,

that is ∫ r

0

ρ(s)ds ≤ u(0) for all r.
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Hence (3.3) holds, completing the proof of the lemma.

Note. The above proof is easily seen to hold equally when u has compact support, that

is u(r) > 0 for 0 ≤ r < b and u(r) = u′(r) = 0 when r ≥ b. Of course in this case the

limit in (3.2) is necessarily zero, and equally

rn[H(ρ) + F (u)] ≡ 0 for r ≥ b.

Lemma 3.3. If t2(u)− t1(u) > 0 on an interval I ⊂ (0, α), then t2(u)− t1(u) can have

at most one critical point on I. If such a point occurs, it must be a strict maximum.

Moreover, if I = (0, d), d ≤ α, then t′2(u)− t′1(u) < 0 on I.

The first part of this result is just Lemma 3.3.1 of [FLS]. (The conditions (F1), (F2)

in that lemma are used only to guarantee the hypotheses on F (u) in Lemma 1.2.6, and

hence are not required here – see also Lemma 3.6.3.)

The second part is Lemma 3.6.5 of [FLS].

Lemma 3.4. Let u1(r) and u2(r) be two different ground states for (1.5). Then the

graphs u = u1(r) and u = u2(r) cannot intersect at any point in the set 0 < u ≤ a, r > 0.

This is just Theorem 3.6.7 of [FLS], together with unique continuation (see Proposition

A2 of [FLS] with the modified initial conditions u(a) > 0 and u′(a) < 0).

4. Proof of Theorem 1. Part II.

Let u1, u2 be two different radial ground states, with u1(0) = α1, u2(0) = α2. We

assert that α1 6= α2. Indeed, if α1 = α2, then as noted at the beginning of Section 3

we must have f(α1) > 0. By Proposition A4 of the Appendix of [FLS], together with

conditions (2) and (b), (c), it then follows that u1(r) ≡ u2(r) as long as r ≤ ra, where

u1(ra) = u2(ra) = a. But u′(r) < 0 as long as r > 0, u(r) > 0. Therefore, because

equation (2.1) is singular only when u′(r) = 0, it is clear that the Cauchy problem for

(2.1) at r = ra is unique, that is u1(r) ≡ u2(r) for all r > 0. (This is Proposition A2 of

[FLS]). This contradicts the assumption that u1 and u2 are different, and the assertion

is proved. (An alternative method to prove the assertion appears on page 227 of [FLS].)

For definiteness we now suppose α1 < α2, where of course α1 > a. We first show that

the graphs of u1(r) and u2(r) intersect at most once in the region r ≥ 0, u > 0.



12 PATRIZIA PUCCI AND JAMES SERRIN

By Lemma 3.4 there can be no intersection at any point (R,U) where R ≥ 0, 0 < U ≤
a. We claim on the other hand that there can be at most one intersection (R,U) where

U > a. Suppose in fact that there were two such points, (RI , UI) and (RII , UII). Let RI

be the first intersection and RII the second (intersection points must be isolated by the

uniqueness of the Cauchy problem), that is RI < RII , UI > UII and

u1(RI) = u2(RI) = uI , u1(RII) = u2(RII) = uII .

For r between 0 and RI we have u1(r) < u2(r), that is

t2(u) > t1(u) for uI < u ≤ α,

where α = min(α1, α2) = α1. By Lemma 3.3 it follows that t2(u) − t1(u) can have at

most one critical point on the interval (uI , α), which (should it occur at all) would have

to be a strict maximum. But

t′2 − t′1 →∞, as t → α− (α = α1)

(since t′1 → −∞ and t′2 → finite limit as u → α−), while clearly

t′2 − t′1 > 0 at t = uI .

Hence necessarily

(4.1) t′2 − t′1 > 0 for uI ≤ u < α.

Between RI and RII the same argument shows (since t1 > t2 for uII < u < uI) that

there is exactly one point u = uc between uI and uII such that t′2(uc) = t′1(uc), and

t′2 − t′1 > 0 for uc < u < uI

t′2 − t′1 < 0 for uII < u < uc.

Combining with (4.1), we have specifically

(4.2) t′2(u) > t′1(u) for uc < u < α;
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of course uc > a.

Let C = T12(uc). By (b) we have f(u) > 0 for u ≥ uc. Then from (4.2) and Lemma 3.1

we see that T ′12(u) < 0 for uc < u < α. Therefore

(4.3) C > T12(u), uc < u < α.

Now we apply Proposition 1 (this is the idea of Erbe and Tang) to each of the solutions

u1(r), u2(r). Thus we have

(4.4)
P (R1c, uc, ρ1(R1c)) = n

∫ R1c

0

rn−1ρ1Ω(ρ1)L(u1, ρ1)dr

P (R2c, uc, ρ2(R2c) = n

∫ R2c

0

rn−1ρ2Ω(ρ2)L(u2, ρ2)dr,

where

(4.5) L(u, ρ) = K ′(u)− G(ρ)
ρΩ(ρ)

+
1
n

,

and

ρ1 = ρ1(r) = |u′1(r)|, ρ2 = ρ2(r) = |u′2(r)|

R1c = t1(uc), R2c = t2(uc).

Then by subtraction, and change of integration variable from r to u, we derive

(4.6)

P (R1c, uc, ρ1(R1c))− CP (R2c, uc, ρ2(R2c))

= n

∫ uc

α

{Ctn−1
2 Ω2(u)L(u, ρ2(t1))− tn−1

1 Ω1(u)L(u, ρ1(t1))}du

+ nC

∫ α

α2

tn−1
2 Ω2(u)L(u, ρ2(t1))du,

where Ω1(u) = Ω(ρ1(r(u))), Ω2(u) = Ω(ρ2(r(u))).

By (4.2) and the fact that ρ = −1/t′, we obtain ρ2(t2(u)) > ρ1(t1(u)) for uc < u < α.

Hence by the main assumption (3)

L(u, ρ2(t2) ≥ L(u, ρ1(t1)), uc < u < α.
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It follows that

(4.7)

{Ctn−1
2 Ω2(u)L(u, ρ2(t2))− tn−1

1 Ω1(u)L(u, ρ1(t1))}

≥ {Ctn−1
2 Ω2(u)− tn−1

1 Ω1(u)}L(u, ρ2(t2)

= tn−1
2 Ω2(u){C − T12(u)}L(u, ρ2(t2)).

Now from (4.5) and (1.6) it is clear that

(4.8) L(u, ρ) ≥ K ′(u)− 1
m

+
1
n
≥ 0,

by the principal hypothesis (2.5). Hence, using (4.3), both integrands on the right hand

side of (4.6) are non-negative; in turn, since uc < α < α2 the right hand side of (4.6) is

non-positive.

On the other hand, from the definition (2.4),

P (R1c, uc, ρ1(R1c))− CP (R2c, uc, ρ2(R2c))

= t1(uc)n [H(ρ1(R1c)) + F (uc)]− Ct2(uc)n [H(ρ2(R2c)) + F (uc)]

− n{t1(uc)n−1Ω1(uc)− Ct2(uc)n−1Ω2(uc)}K(uc)

= I1 + I2.

Using the fact that t′1(uc) = t′2(uc), we obtain ρ1(R1c) = ρ2(R2c), Ω1(uc) = Ω2(uc) and

Ct2(uc)n−1 = t1(uc)n−1,

so I2 = 0. Similarly

I1 = t1(uc)n−1 · [t1(uc)− t2(uc)] · [H(ρ1(R1c) + F (uc)] > 0

since t1(uc) > t2(uc) and H(ρ) + F (u) > 0 – see (3.4) and note that the integral is

certainly positive for 0 < r ≤ R1c. This contradicts the equality in (4.6) and shows that

the two presumed intersection points cannot occur.

If we combine this with what has already been observed, that there are no intersection

points below the line u = a, it follows that the graphs of u1(r) and u2(r) can have at

most one intersection point in the region r ≥ 0, u > 0, and that this can occur only when

u > a.
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In fact, there cannot even be a single such intersection. Suppose there were, say at

(R,U). Then we use the second part of Lemma 3.3 to see that

(4.9) t1(u) > t2(u), t′2(u) > t′1(u)

for 0 < u < U = u1(R) = u2(R). Since also, as for (4.1) above,

t1(u) < t2(u), t′2(u) > t′1(u)

for U < u < α, we get

t′2(u) > t′1(u), 0 < u < α.

It follows from Lemma 3.1 that

T ′12(u) < 0 for a < u < α

T ′12(u) > 0 for 0 < u < a.

In particular

T12(u) < T12(a) = D for 0 < u < α, u 6= a.

We now use the relation (4.6) again, but replacing C by D and the interval uc < u < α

by ε < u < α, where ε > 0 is small. This gives

(4.10)

P (R1ε, ε, ρ1(R1ε))−DP (R2ε, ε, ρ2(R2ε)

= n

∫ ε

α

{Dtn−1
2 Ω2(u)L(u, ρ2(t2))− tn−1

1 Ω1(u)L(u, ρ1(t1))}du

+ nD

∫ α

α2

tn−1
2 Ω2(u)L(u, ρ2(t2))du,

where R1ε = t1(ε), R2ε = t2(ε).

In writing (4.10) care must be taken to avoid the singularity of P (r, u, ρ) at u = a. This

is accomplished by replacing the full interval (ε, α) by the pair of integration intervals

(ε, a− δ), (a + δ, α),

thus effectively isolating the singularity at u = a, and then letting δ → 0. The additional

terms which thereby arise on the left hand side of (4.10) are then given by (in an obvious

notation)

[P1(u)−DP2(u)]
∣∣∣∣u=a+δ

u=a−δ
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which we denote by J . From the definition (2.4) of P , it is clear that

(4.11) lim
δ→0

J = n lim
δ→0

{Dt2(u)n−1Ω2(u)− t1(u)n−1Ω1(u)}K(u)
∣∣∣∣u=a+δ

u=a−δ

since all remaining terms in J arise from functions which are continuous at u = a. The

function on the right side of (4.11), when evaluated at u = a− δ, can be rewritten

[t2(a− δ)]n−1Ω2(a− δ)F (a− δ)
T12(a− δ)− T12(a)

f(a− δ)
.

By the mean value theorem and (3.1),

T12(a− δ)− T12(a) = −T12(a− ξ)
1

ρΩ(ρ)

∣∣∣∣ρ=ρ2(R2,a−ξ)

ρ=ρ1(R1,a−ξ)

· f(a− ξ) · δ.

for some ξ ∈ (0, δ). Hence

(4.12) lim
δ→0

T12(a− δ)− T12(a)
f(a− δ)

= −T12(a)
1

ρΩ(ρ)

∣∣∣∣ρ=ρ2(R2a)

ρ=ρ1(R1a)

· lim
δ→0

f(a− ξ)
f(a− δ)

δ.

Again by the definition of K(u),

f(a− ξ)
f(a− δ)

=
K(a− δ)
K(a− ξ)

· F (a− ξ)
F (a− δ)

.

But since K ′(u) is bounded below by virtue of (2.5), we have

K(a− δ) ≤ K(a− ξ) + Const. δ.

Clearly F (a) < 0, so K(a− δ) →∞ as δ → 0. Thus

0 <
K(a− δ)
K(a− ξ)

≤ 1 +
Const. δ
K(a− ξ)

< 2

for δ suitably small. Consequently, since F is continuous at a,

(4.13) lim
δ→0

f(a− ξ)
f(a− δ)

δ = lim
δ→0

K(a− δ)
K(a− ξ)

δ = 0.

The same argument yields as well (since f > 0, F < 0, K < 0 for a < u < a + δ and δ

small) that

(4.14) lim
δ→0

f(a + ξ)
f(a + δ)

δ = 0.
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Thus from (4.11)–(4.14) we see without difficulty that

lim
δ→0

J = 0.

That is, the singularity at u = a is removable and formula (4.10) holds as written,

naturally with the proviso that the first integral on the right side should be considered

as a limit with δ → 0 (in fact it is not hard to see that this integral also exists as written,

irrespective of the singularity at u = a).

The integrands on the right side of (4.10) are clearly non-negative, as before. Now

consider the limit of the left hand side as ε → 0. Since K ′ is bounded below by the real

number (n−m)/nm, and K(u) > 0 for 0 < u < a, we have

(4.15) lim
u→0

K(u) = κ̃ ≥ 0.

In fact κ̃ must be zero. Otherwise we would have

K(u) =
F (u)
f(u)

=
F (u)
F ′(u)

≥ κ, 0 < u < a

for some constant κ > 0. By integration

F (v)
F (u)

≤ exp (v − u)/κ, 0 < u < v < a.

Rewriting gives |F (v)| ≤ |F (u)| exp (v − u)/κ, whence letting u → 0 yields |F (v)| = 0,

0 < v < a, which is impossible. Hence (4.15) holds with κ̃ = 0.

We now apply Lemma 3.2. To begin with, by (3.2) and (4.15), and using the notation

r = t(u),

(4.16) lim
u→0

rn−1Ω(ρ(r))K(u) = λ lim
u→0

K(u) = 0.

Let (ri)i be a sequence with ri →∞ such that4

(4.17) lim
ri→∞

rn
i [H(ρ2(ri)) + F (u2(ri))] = 0,

which exists in view of (3.3). Then putting

εi = u2(ri), i = 1, 2, . . . ,

4For a compact support solution (see the note after Lemma 3.2) we take ri → b.
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we get with the help of (4.16) and (4.17) – note ri = t2(εi) = R2εi –

(4.18)
lim inf
ε=εi→0

{P (R1ε, ε, ρ1(R1ε))−D P (R2ε, ε, p2(R2ε))}

= lim inf
ε=εi→0

Rn
1ε[H(ρ1(R1ε)) + F (u1(R1ε))] ≥ 0.

On the other hand, since the integrands on the right hand side of (4.10) are non–negative,

the right hand side of (4.10) clearly approaches a a non-positive limit as ε → 0. Conse-

quently, in view of (4.18) the right hand side of (4.10) approaches zero as ε → 0, and in

turn the integrands on the right hand side must vanish on (0, α) and (α, a), respectively.

Hence (see e.g. (4.6)–(4.8))

K ′(u) ≡ n−m

nm
.

for 0 < u < α2, u 6= a. But this is impossible since K(u) = F (u)/f(u) and

lim
u→a−

F (u)/f(u) = ∞.

We thus conclude that the graphs of the solutions u1(r) and u2(r) do not intersect at

any point in the region r ≥ 0, u > 0, that is

t2(u) > t1(u), 0 < u < α.

This is itself impossible, however, as noted in both [FLS] and [ET]. Indeed by Lemma 3.3

t′2(u)− t′1(u) < 0, 0 < u < α.

But this is an absurdity because, as noted earlier, t′1(u) → −∞ as u → α− while t′2(α) is

finite.

This completes the proof of Theorem 1.

5. The canonical case f(u) = −up + uq, 0 < p < q.

Here (a), (b), (c) are satisfied with a = 1. We first consider the important case when

1 < m < n.

As in Section 4 of Erbe and Tang, one computes that

K(u) =
F (u)
f(u)

=
(
− up+1

p + 1
+

uq+1

q + 1

) /
(−up + uq)
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(so K → 0 as u → 0 without further argument!) and

K ′(u)− n−m

nm
=

1
σ + 1

· ξv2 − ζv + ν

(v − 1)2

for v 6= 1, where

σ =
(m− 1)n + m

n−m
, v = uq−p

and

ξ =
σ − q

q + 1
, ν =

σ − p

p + 1
, ζ = ξ(q − p + 1) + ν(p− q + 1).

Thus to satisfy (2.5) it is necessary to determine the range of exponents p, q such that

D(x) ≡ ξx2 − ζx + ν ≥ 0 for x ≥ 0.

Naturally one must require 0 < p < q ≤ σ, a condition which we assume in the sequel

without further mention. Then D(x) ≥ 0 for x ≥ 0 if and only if either

ζ ≤ 0 or ζ2 ≤ 4ξν.

Lemma 1. ζ2 ≤ 4νξ if and only if

I(p, q) ≡ (p + 1)(q − p + 1)2(σ − q)− (q + 1)(p− q + 1)2(σ − p) ≥ 0.

Proof. By direct calculation

4ξν − ζ2 = 2ξν(1 + (q − p)2)− ξ2(q − p + 1)2 − ν2(p− q + 1)2

= −(ξ − ν)2{(q − p)2 + 1} − 2(q − p)(ξ2 − ν2)

= (ξ − ν){−ξ((q − p) + 1)2 + ν((p− q) + 1)2}

=
(σ + 1)(q − p)

(p + 1)2(q + 1)2
I(p, q).

Lemma 2. D(x) ≥ 0 if p + 1 ≤ q.

Proof. We may suppose ζ > 0 without loss of generality. Then

(p + 1)(1 + q − p)(σ − q) + (q + 1)(1 + p− q)(σ − p) > 0

and, noting that q − p− 1 ≥ 0,

I(p, q) = (p + 1)(1 + q − p)2(σ − q) + (q − p− 1) · (q + 1)(1 + p− q)(σ − p)

≥ (p + 1)(1 + q − p)2(σ − q)− (q − p− 1) · (p + 1)(1 + q − p)(σ − q)

= 2(p + 1)(σ − q)(1 + q − p) ≥ 0.
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Lemma 3. I(p, q) for fixed p is a cubic in q with leading term −(σ + 1)q3. Moreover

I(p, p) = 0 and

∂I

∂q
(p, p) = −4p2 + 4(σ − 1)p + 3σ − 1,

I(p, p + 1) = 4(p + 1)(σ − p− 1),

I(p, σ) = −(σ + 1)(σ − p)(σ − p− 1)2.

Proof. Direct verification.

Lemma 4. Let σ > 1. Then I(p, q) ≥ 0 when p ≤ σ − 1, p ≤ q ≤ p + 1.

Proof. From the first displayed line of Lemma 3 it is easy to see that (∂I/∂q)(p, p) > 0

for 0 < p < p0(σ), where

p0(σ) =
1
2
{
σ − 1 +

√
(σ − 1)2 + 3σ − 1

}
(thus, e.g., when n = 3, m = 2 we have σ = 5 and p0 = 4.739).

Obviously σ − 1 < p0 < σ. Hence, for p ≤ σ − 1,

∂I

∂q
(p, p) > 0, I(p, p) = 0, I(p, p + 1) ≥ 0.

Therefore, using the fact that I is a cubic in q with leading term −(σ + 1)q3, it follows

easily that

I(p, q) ≥ 0, p ≤ q ≤ p + 1.

Lemma 5. Suppose σ − 1 < p < p0, σ > 1. Then there exists q0 = q0(p, σ) such that

p < q0 < σ and

I(p, q) > 0 for p ≤ q ≤ q0.

Proof. Similar to the previous lemma, except that the relation I(p, p + 1) ≥ 0 must be

replaced by I(p, σ) < 0.
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Lemma 6. Suppose 1/3 < σ ≤ 1. Then 0 < p0 < σ. Moreover, there exists q1 = q1(p, σ)

such that p < q1 < σ when 0 < p < p0 and

I(p, q) ≥ 0 for 0 < p < p0, p ≤ q ≤ q1.

Proof. This is the same as for Lemma 5, once one notes that p0 > 0 (rather than p0 >

σ − 1) because σ > 1/3.

Let σ > 1. Combining Lemmas 1, 2, 4, 5, we see that D(x) ≥ 0 for x ≥ 0 when

p ≤ σ − 1, and also when σ − 1 < p < p0(σ), p < q ≤ q0(p, σ). This completes the proof

of Theorem 2 for the case n > m. Theorem 2′ follows in the same way, using Lemma 6

rather than Lemmas 4, 5.

The case n ≤ m is easist considered by letting σ →∞ in (2.7), leading to the results

noted immediately after the statement of Theorem 2.

6. Remarks and generalizations

1. Condition (a), that f be continuous in [0,∞) and f(0) = 0, can be weakened,

provided some care is exercised concerning the meaning of compact support solutions,

i.e. solutions such that u(r) > 0 for r < b and u(r) = u′(r) = 0 for r ≥ b. In particular,

when f(0) is not zero the function u(r) in these cases can no longer be a solution of (2.1)

when r > b. To avoid this difficulty we define a radial compact support ground state as

a function u(r), such that u(r) is positive and satisfies (2.1) for r < b, has the property

u(r), u′(r) → 0 as r ↑ b,

and finally u(r), u′(r) ≡ 0 for r ≥ b.

Such compact support ground states exist even when f(0) is not defined (see [KK]

when f(0) exists but is negative rather than zero); moreover one finds exactly as in

[FLS], Lemma 1.2-6 (i), that they retain the property u′(r) < 0 for 0 < r < b. The

preceding uniqueness proof then continues to hold if we replace condition (a) by the

weaker hypothesis

(a′) f is locally integrable on [0,∞).

In particular, the integral F (u) =
∫ u

0
f(τ)dτ then exists, and F (u) → 0 as u → 0 (note

that this applies even if f(u) → −∞ as u → 0).
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For the model nonlinearity

(1.2) f(u) = −up + uq

we can thus allow −1 < p < q. (The case p ≤ −1 is ruled out, since then f is not

locally integrable on [0,∞)). The uniqueness condition (2.5) for the nonlinearity (1.2)

has already been explored in Section 4 when p > 0. For the range −1 < p ≤ 0, σ ≥ 1 a

similar argument applies, and in particular (2.5) holds when 0 ≤ q < σ. To demonstrate

this, it is enough to verify that

I(p, 0) > 0 for − 1 < p ≤ 0, σ ≥ 1/3,

I(p, p + 1) > 0 for − 1 < p ≤ 0, σ ≥ 1,

and to use the cubic property of I(p, q) together with I(p, p) = 0..

We summarize the above results in the following two theorems.

Theorem 3. Let conditions (a′), (b), (c) hold. Then equation (1.5) admits at most one

radial ground state when (2.5) is satisfied.

Theorem 4. Suppose −1 < p ≤ 0, 0 ≤ q < σ, σ ≥ 1. Then there cannot be more than

one radial ground state of equation (1.5) for the nonlinearity (1.2).

Observe from the Corollary in Section 1..3 of [FLS] that any ground state in the case

of Theorem 4 in fact has compact support (since p + 1 < m).

Finally, there is a corresponding result to Theorem 2′, which we state without proof.

Theorem 4′. Let 1/3 ≤ σ < 1. Then (1.1) admits at most one ground state for the

nonlinearity (1.2) when

(i) −1 < p ≤ σ − 1, 0 ≤ q < σ

(ii) σ − 1 < p ≤ 0, 0 ≤ q ≤ q1.

2. Condition (b) can also be weakened to the requirement that f(u) be locally Lipschitz

continuous on (0,∞). In this case condition (2.5) must be interpreted as holding almost

everywhere, or alternatively (as one easily sees) that the function

K(u)− n−m

nm
u
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is non-decreasing on (0, a) and on (a,∞). The proofs remain identical, since by Propo-

sition 1 the function P is still absolutely continuous when u 6= a (rather than being

continuously differentiable), which leaves the integral formulas (4.6) and (4.10), and so

the proof itself, unchanged.

3. The equation

(6.1) ∆mu + rlf(u) = 0 in Rn,

where

(6.2) m > 1, l + m min
{

1,
n− 1
m− 1

}
> 0,

can be treated by the same approach.

Because of the singular term rl in (6.1), it is however first necessary to give an appro-

priate definition of a ”regular” solution of (6.1). That is, we consider non-negative radial

distribution solutions of class C1(Rn \ {0}) which are bounded near x = 0, and with a

further technical assumption if n < m, namely

(6.3) Du(x) = o
(
r−(n−1)/(m−1)

)
as x → 0.

We shall also need the following

Lemma. Let u = u(r) be a regular radial solution of (6.1), with lim infr→0 u(r) = α > 0.

Then

(6.4) u′(r) = O
(
r(l+1)/(m−1)

)
and u(r)− α = O

(
r(l+m)/(m−1)

)
as r → 0, where l + m > 0 by (6.2).

Proof. We proceed as in Lemma 1.1.1 of [FLS]. Thus, letting w(r) = |u′(r)|m−2u′(r),

r > 0, it follows from (6.1) that[
rn−1w(r)

]′ = −rl+n−1f(u(r)), r > 0.

By integration over [s, r], 0 < s < r, there results

(6.5) rn−1w(r)− sn−1w(s) = −
∫ r

s

tl+n−1f(u(t))dt.
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Clearly l + n > 0 by (6.2), so that tl+n−1f(u(·)) ∈ L1[0, δ] for some δ > 0. Then (6.5)

shows that sn−1w(s) tends to a finite limit γ as s → 0.

We assert that γ = 0. This is obvious from (6.3) if n < m. Suppose n ≥ m and, for

contradiction, γ 6= 0. Then clearly u′(r) = sign γ|γr|−(n−1)/(m−1)[1+o(1)] as r → 0. But

r−(n−1)/(m−1) 6∈ L1[0, 1], so in turn u cannot be bounded near r = 0. This is impossible,

and the claim is shown.

Again letting s → 0 in (6.5) we get

rn−1w(r) = −
∫ r

0

tl+n−1f(u(t))dt,

which implies

u′(r) = O
(
r(l+1)/(m−1)

)
as r → 0.

A further integration then gives u(r) − α = O(r(l+m)/(m−1)), completing the proof of

(6.4).

Now, with the change of variable

y =
m

l + m
r(l+m)/m

it is not hard to see that regular radial solutions of (6.1) satisfy the ordinary differential

equation

(6.6) (|u′|m−2u′)′ +
N − 1

y
|u′|m−2u′ + f(u) = 0, y > 0,

where primes now denote differentiation with respect to y, and

N = m
l + n

l + m

(the restriction (6.2) on l implies that l + m > 0 and N > 1). Moreover, by (6.4) one

finds

u′(y) = r−l/mO
(
r(l+1)/(m−1)

)
= O

(
y1/(m−1)

)
, u(y)− α = O

(
ym/(m−1)

)
as y → 0. That is, if u = u(r) is a regular radial ground state of (6.1) then u = u(y) is

radial distribution solution of (6.6) of class C1(Rn), satisfying the ground state conditions

u(y) ≥ 0, u 6≡ 0, u(y) → 0 as y → 0.
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Since
N −m

Nm
=

n

l + n
· n−m

nm

the uniqueness criterion (2.5) takes the form

d

du

F (u)
f(u)

≥ n

l + n
· n−m

nm
.

That is, under this condition, regular radial ground states of (6.1) are unique – translations

of the origin not being allowed since O is already fixed in (6.1).

Note that when n > m the natural Sobolev exponent for (6.1) and (6.6) is

σ =
(m− 1)N + m

N −m
=

(m− 1)n + (l + 1)m
n−m

,

cf. (1.4).

7. The exterior Neumann problem.

Consider non-negative radial solutions of (1.5) in the exterior of the ball B0 of radius

R0, subject to the boundary conditions

∂u

∂n
= 0 on ∂B0, u(r) → 0 as r →∞.

The required equation is then (2.1), with the conditions

u′(R0) = 0, u(r) → 0 as r →∞.

The uniqueness question for this problem can be treated essentially as before, and all the

previous results continue to hold.

In particular, to prove the analogue of Theorem 1, we assume for contradiction that

there are two different solutions u1 = u1(r), u2 = u2(r) for R0 ≤ r < ∞. We may

suppose

u1(R0) = α1, u2(R0) = α2, with a < α1 < α2.

The preceding arguments then carry over essentially unchanged, except for the proof that

solutions cannot intersect above the line u = a.
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More specifically, for the present case the relations (4.4) must be replaced by

P (R1c, uc, ρ1(R1c))−Rn
0 F (α1) = n

∫ R1c

R0

rn−1ρ1Ω(ρ1)L(u1, ρ1)dr,

P (R2c, uc, ρ2(R2c))−Rn
0 F (α2) = n

∫ R2c

R0

rn−1ρ2Ω(ρ2)L(u2, ρ2)dr.

Multiplying the second of these equations by C, as previously, and subtracting from the

first now yields the relation (4.6), modified however by the inclusion of the additional

term

S = Rn
0 [CF (α2)− F (α1)]

on the left hand side.

We show that S > 0. To see this, note first that C = [t1(u)/t2(u)]n−1 > 1, and that

(since α2 > α1 > a)

F (α2)− F (α1) =
∫ α2

α1

f(τ)dτ > 0.

It is therefore enough to have F (α2) > 0. This however follows from [FLS], Lemma 1.2.1

– which for its derivation relies only on the fact that ρ = 0 at r = 0, or in the present

case, that ρ = 0 when r = R0.

Having shown that S > 0, the argument proving that there cannot be two intersections

above the line u = a now carries over word for word.

Continuing with the modified proof, one finds next that the relation (4.10) is changed

by the addition of the term

S′ = Rn
0 [DF (α2)− F (α1)]

on the left hand side.

We show that S′ > 0, this now requiring only that D > 1, as in the previous argument.

To obtain this, first note from Lemma 3.2 that

rn−1Ω(ρ1) = λ1 −
∫ ∞

r

rn−1f(u1)dr,

rn−1Ω(ρ2) = λ2 −
∫ ∞

r

rn−1f(u2)dr,
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where λ1, λ2 ≥ 0 are the limits in (3.2), respectively for the solutions u1 = u1(r) and

u2 = u2(r). Changing variables from r to u(r) in these relations, and subtracting, gives

[t1(u)]n−1Ω1(u)− [t2(u)]n−1Ω2(u) = λ1 − λ2 −
∫ u

0

{
[t1(u)]n−1

ρ1(u)
− [t2(u)]n−1

ρ2(u)

}
f(u)du

in an obvious notation.

By (4.9) the expression in braces in the integrand is positive when 0 < u < U , while

f(u) < 0 for 0 < u < a. Hence for 0 < u ≤ a we get

[t1(u)]n−1Ω1(u)− [t2(u)]n−1Ω2(u) > λ1 − λ2

(recall that U > a). Also, by [FLS], Lemma 3.6.2, one obtains λ2 ≤ λ1 since u2(r) ≤ u1(r)

for all sufficiently large r. Consequently

[t1(a)]n−1Ω1(a)− [t2(a)]n−1Ω2(a) > 0,

which is exactly the condition D > 1.

Hence S′ > 0, and the argument showing that there can be no intersections above the

line u = a carries over essentially unchanged.

Since no further modifications are required, Theorem 1 thus holds for the exterior

Neumann problem, as well as for the ground state problem. The remaining theorems of

the paper, dealing with the validity of condition (2.5) for the canonical nonlinearity (1.2),

are of course unchanged, whether one is concerned with the ground state problem or the

exterior Neumann problem.

Acknowledgement. This work is partially supported by CNR, Progetto Strategico Modelli e Metodi per

la Matematica e l’Ingegneria and by the Italian Ministero della Università e della Ricerca Scientifica e
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