UNIQUENESS OF GROUND STATES FOR
QUASILINEAR ELLIPTIC OPERATORS

PATRI1ZIA PUccl AND JAMES SERRIN

In a recent paper, Erbe and Tang provide a striking new identity applying to radial

solutions of the quasilinear equation
(1.1) Apu+ f(u) =0,

see Proposition 1 below. Here, as usual, A,, denotes the degenerate m-Laplace operator
div(|Du|™"2Du), m > 1, and f(u) is a continuously differentiable function defined for
0 <u<oo.

The principal application in their paper is to the uniqueness of the Dirichlet problem
in a ball B, with u =0 on 0B and u > 0 in B. Here, with the help of their identity, we
consider the complementary problem of uniqueness of radial ground states of (1.1), that
is, non-negative, non-trivial radially symmetric solutions on R™ such that v = u(x) — 0
as |z| — oo. This problem, like that considered by Erbe and Tang, has exercised many
researchers in the past decade, principally in the case when f(u) is negative for small u
and superlinear for large u; see in particular [CL], [Co], [CEF1], [Kw], [M], [MS], and most
recently [CEF2], when m = 2, n > 3; and [C2] when 1 < m < 2. Other non-linearities,
having sublinear behavior for large u, have been treated in [PS1], [PS2] and [FLS].

In this paper we shall consider the general case when 1 < m < oo, 2 < n < o0, see
Theorem 1 of Section 2; in fact the dimension n can be treated as a real parameter n > 1,
c.f. the remark following equation (2.1).

Our results apply in particular to the important canonical nonlinearity
(1.2) flu) = —uf +uf,
where

(1.3) O<p<g<o
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and o is the Sobolev exponent

—1
(1.4) a:(m Jntm if m < n; o=o00 ifm>n.
n—m

Previous results for this nonlinearity have been confined for the most part to various
superlinear cases with p = 1 and m < 2, as noted above, and to the ”sublinear” case
g < m—1 when m # 2. For a description of the range of exponents p,q which are
explicitly covered here, see Theorems 2, 2’ below; Theorem 2 in particular shows that,
for o > 1, uniqueness always holds for the subset of (1.3) where p <o — 1.
Corresponding work on the existence of ground states of (1.1) for the superlinear case
can be found in [C1] and for the sublinear case in [FLS]. Moreover for the Laplace operator
Kaper and Kwong have considered nonlinearities of the form (1.2) with 0 <p < ¢ < 1.
The above results also extend to more general equations than (1.1), namely those of

the form
(1.5) div(A(|Du|)Du) + f(u) =0,

where A € C1(0,00). This extension is the second principal goal of the paper.
For p > 0 define

p
Qp) = pA(p),  Glp) = /O Q(p)dp.!
We suppose only the following conditions on the operator A:
(1) (p) >0 for p > 0; Q(p) - 0as p—0,

(2) Q(p) < Const. ¥ (p) for p near 0.

pSAp)
G(p)

Note from (1) that A,Q, G are positive for p > 0 (the integral for G’ being well defined

(3)

is (non-strictly) increasing for p > 0,

since 2 is bounded for p near 0). Moreover, since Q,Q (i.e. G’,G") are positive for

1t is interesting that (1.5) is then the Euler-Lagrange equation for the variational problem
5/{G(|Du|) — F(u)}dz =0,

where F(u) = [* f(s)ds.
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p > 0, the quasilinear equation (1.5) is elliptic when Du # 0 though possibly degenerate
at Du = 0.

For the operator A, we define the critical constant

_ i PP PRUP)
10 ™= G T Gl

It is obvious that G(p) < p§2(p) for p > 0, since €2 is an increasing function. Hence m > 1.

With the assumptions (1), (2), (3) on the operator A, Theorems 1, 2, 2’ then apply
equally to the more general equation (1.5), with the constant o in Theorems 2, 2’ being
given exactly as before in terms of m and n.

We note that conditions (1)—(3) hold, for example, for the operators

(m > 1, as in (1.1))
a>0,¢c>0, m>1,

m > 1,
Ap) = ! 1+ !
p_plog% logl ) 0<p<l,

and so forth. For the last example one finds m = 1, showing that all values m > 1 are

possible.?

In this regard, it is shown in Section 2 that condition (2) is automatically satisfied
whenever m > 1. Thus, except for the anomalous case m = 1, this somewhat arbitrary
appearing condition can be dropped.

In Section 6 we extend the exponent range (1.3) to the set
(1.7) -l<p<g<o,

the conclusions for this case being given in Theorems 3, 4 and 4’. These results are new
even in the classical case of the Laplace operator. In particular, when o > 1 uniqueness

holds in the subset of (1.7) where p <o —1, ¢ > 0.

20ne checks that Q(p) = — 14+ —2+ ), so that Q" > 0 for p > 0 while also Q@ — 0, Q//Q —
log % log %
oo as p — 0. Moreover

1 Q 1
G =p/log —, p—:l—i—l/logf;
p G p

hence m =1 and p2/G is increasing.
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It should be noted in this connection that when n > m and ¢ > o there are no solutions
of either (1.1) or (1.5) corresponding to the canonical nonlinearity (1.2), see [NS], pages
180-181.

Remarks. We emphasize that uniqueness of radial ground states is here understood
subject to an arbitrary translation of the origin. It is important to note moreover that
our results apply equally to radially symmetric ”single bump” compact support ground
states.

As background and motivation for the study fof radial ground states of (1.1), we note
that by the Gidas—Ni—Nirenberg theorem positive ground states of (1.1) corresponding
to the Laplace operator (m = 2) are necessarily radially symmetric about some origin
O € R™, provided that the function f = f(u) is appropriately regular near v = 0 and
f/(0) < 0. A generalization of this result to elliptic quasilinear equations of the form
(1.5), as well as to compact support ground states and to more general nonlinearities f,

also holds. For details, see the forthcoming paper [SZ].

The methods developed here for the study of the ground state problem can be applied
also for the exterior Neumann problem. In particular, consider non-negative, non-trivial
radial solutions of (1.5) in the exterior of the ball By of radius Ry, subject to the boundary
conditions

ou

%:0 on 0By, u(r) — 0 asr — oc.

The question of uniqueness of solutions of this problem is treated in Section 7, the results

being exactly analogous to those described earlier for the ground state problem.

2. Main results.

We consider radial ground states of the problem
(1.5) div(A(|Du|)Du) + f(u) =0, r € R",

namely radial distribution solutions of class C'(R") such that u > 0, u # 0, u(z) — 0 as
|z| — o0o. The operator A is assumed, without further mention, to obey conditions (1)—
(3) given in the introduction, while the function f(u), 0 < u < oo, satisfies the following

assumptions:

(a) f is continuous on [0,00), and f(0) = 0;
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(b) f is continuously differentiable on (0, c0);

(c) there exists a > 0 such that f(a) =0 and

f(u) <0 for 0 < u < a,

f(u) >0 for a < u < oo.

Conditions (a) and (b) can be weakened somewhat, at the expense of a slightly more
sophisticated treatment, see Section 6.
We observe that radial solutions u = wu(r) of (1.5) satisfy the ordinary differential

equation
n—1

(A(ju' ) + A(lu'Du’ + f(u) =0

for r > 0, or equivalently
(2.1) [P A ]+ e f (u) = 0;

of course also u’/(0) = 0. The expression r"~tA(|u/|)u’ is then of class C'[0,0), see
Section 1.1 of [FLS]. Finally, n naturally can be considered a real parameter, with n > 1.

We shall typically be dealing with solutions u(r) of (2.1) having the property u'(r) < 0.
Setting p = p(r) = |u/(7)], equation (2.1) can then be written

(2.2) ")) =" f(w).
Let H(p) be the partial Legendre transform of G(p), namely

H(p) = pQ(p) —G(p),  p=0,

where it is convenient in what follows to define ©(0) = G(0) = 0 Then by Lemma 1.1.2
of [FLS] we have along solutions u of (2.1)

(23 3 tt1() + Py = - 1),

Next introduce the important function

(2.4) P(r,u,p) =" [H(p) + F(u)] — nr" ' Q(p) K (u),
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defined for r > 0, p > 0, u > 0 (# a), where

Kwu)=F(u)/f(u) and F(u)= /O“ f(r)dr.

The following proposition is due to Erbe and Tang in the special case when A(p) = p™ 2

(degenerate Laplace operator).
Proposition 1. Let u = u(r) be a non-negative solution of (2.1) with u/(r) < 0. Then,
putting p = p(r) = |u/(1)|, we have

d _ e L Glp) 1
= P(ru(r), plr) = 1" p0p) {K ) - S0 ﬁ}

for all v > 0 such that u(r) # 0,a. [Here K'(u) means dK (u)/du.]
Proof. By (2.2) and (2.3) we have

iP(T, u(r), p(r)) = "~ {n[H(p) + F(u)] — (n —1)pQ(p)}

dr
—nr" Q) K (u)u' — nr" T f (u) K (u).

Simplification of this gives Proposition 1.

Note that the identity in Proposition 1 also holds when u’(r) > 0, provided P is defined
instead as 7" [H (p) + F(u)] + nr"~1Q(p) K (u).

Theorem 1. FEquation (1.1), and more generally equation (1.5) with m defined by (1.6),

admits at most one radial ground state if conditions (a), (b), (¢) hold and

(2.5) % {1;((2))} > nr:mm for uw>0,u+a.

Remarks. As noted in the introduction, uniqueness of ground states is here understood
subject to arbitrary translations of the origin. When 1 < m < n, the right side of (2.5)

is the reciprocal of the Sobolev exponent for the space W1 ™ (R™).

Theorem 2. Let o > 1, where o is defined by (1.4). Equation (1.1), and equally equation

(1.5), then admits at most one radial ground state when

(2.6) flu) = —uP +u?
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and
(2.7) O<p<o—1, p<q<o.

Moreover there exists po = po(o) € (0 —1,0) and qo = qo(p,0) € (0 — 1,0) such that the

same conclusion holds in the additional range

(2.8) o—1<p<po(o), p<q<qo(po)

(po, qo are respectively solutions of quadratic and cubic equations, with coefficients de-

pending respectively on o, and on p, o).

Recall that when n < m the value 0 = oo is to be used, with the natural interpretation
that (2.7) is replaced by 0 < p < ¢ < oo while (2.8) is null. In fact, in this case one
can even allow exponential growth to the function f(u) as u — co. We shall discuss this

possibility in a forthcoming paper [PS].

{ 2n }
m > max< 1,
n—+2

(and in particular when m > 2 or n < 2), it is easy to check that ¢ > 1. On the other

When

hand, for 1 < m < 2 and for appropriate dimensions n > 2 it can happen that o < 1, and
even that o is arbitrarily near zero. For these cases, the following result complements

Theorem 2.

Theorem 2. Let 1/3 < o < 1. There exist po = po(c) € (0,0) and g1 = ¢1(p, o) € (0,0)
such that equations (1.1) and (1.5) admit at most one ground state when f is given by
(2.4) and

0 <p < po, P<qg<q.
It is not known whether uniqueness holds in the entire range 0 < p < ¢ < o, though

when m = 2 and ¢ > 1 a related result appears in recent work of Cortazar, Elgueta and
Felmer [CEF2].

We conclude the section with a simple lemma showing that condition (2) is not needed

when m > 1.
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Lemma. Suppose m > 1. Then

Qp), p>0.

Proof. By (3) and the fact that A € C'(0, ), we have for p > 0

pUp) 1" [ (p) + Qp))G(p) — p2(p)?
o< 5] = G(p)? '

Hence

by (1.6), as required.

3. Proof of Theorem 1. Part 1.

We assume throughout, without further mention, that (1), (2), (3) and (a), (b), (c)
hold. It is of course enough to treat the case of equation (1.5).

In the course of the proof we shall use various results of [FLS], this being allowable
since the functions A(p) and f(u) here satisfy the general conditions required in [FLS],
namely that f is continuous on [0, 00) and f(0) = 0; that A is continuous on (0, 00) and
Q(p) — 0 as p — 0; and (2 is strictly increasing for p > 0.

It is well known that any radial ground state u = wu(r) of (1.5) has the property
u'(r) < 0 as long as r > 0, u(r) > 0; see [FLS], Proposition 1.2.6 (i), and note that
F(u) < 0 at the only place, namely u = a, where v > 0 and f(u) = 0. In turn, one
may introduce the inverse function ¢ = t(u) of u = u(r), defined for 0 < u < u(0). Here
necessarily u(0) > a by [FLS], Lemma 1.2.6 (ii).

The following result is due to Erbe and Tang in the special case when A(p) = p™ 2.

Lemma 3.1. Let uy, ug be two radial ground states of (1.5), with respective inverses
t1(u), 0 <u < ag =u1(0), and ta(u), 0 < u < ag = u2(0). Put

pr(r) =lui(r)l,  pa(r) = Juy(r)],

M (u) =Q(p1(t1(w),  Qa(u) = Q(p2(t2(w)))
and?

t_l)n_l 2 (u)

" — 0 <u<a=min(a, az).
2

=t = () g

3In this formula we have written ¢, to rather than t; (u), t2(u). Similar notational abbreviations will
be used frequently in the sequel.
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Then for a < u < o we have (with ' = d/du)
Ti5(u) >0 if and only if th(u) < t)(u),
while for 0 < u < a

Ti5(u) >0 if and only if  t5(u) >t} (u).

Proof. By logarithmic differentiation

1dT d d n d n—
o = ™ logT = Tu log (tl 191(u)) T log (tz 192(“»
1 d [ ) dr p=p1(r), r=t1(u)
= [r"" (P)] ==
(3.1) r 1Q(p) dr du p=p2(r), r=ta(u)

1 p=p2(t2(u))

= ———~ - fuw),
PP o=y (81 ()

where in the last step we have again used the fundamental equation (2.2) and the fact
that u/(r) <0 when 0 < u < a.

We observe that pQ(p) is an increasing function by assumption (1), and moreover that

pa(t2(u)) = =1/t5(u),  pr(ta(u)) = =1/t)(u).

Thus pa(ta(u)) > p1(t1(u)) if and only if  t5(u) > t}(u). Hence dT'/du has the same
sign as f(u) if and only if th(u) < tj(u). This completes the proof, once we note that
f(u) >0 fora<u<aand f(u) <0 for 0 <u<a.

Lemma 3.2. Let u = u(r) be a radial ground state of (1.5), and set p = |u'(r)|. Then

(3.2) r"~1Q(p) — finite limit X >0
and
(3.3) liminf r"[H (p) + F(u)] = 0.

r—00
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Proof. The first result is just Lemma 3.6.1 of [FLS]. We indicate the proof. By (2.2)
[ 1Q>p)) = r"f(u(r)) <0 when u(r) < a.

Hence r"~1Q(p) is non-increasing when r is so large that u(r) < a, i.e. in the interval
(rg,00), where u(rg) = a. This proves (3.2).
Next by (3.2) we see that Q(p) — 0 as r — oo. Thus by the ellipticity condition (1)

also p — 0. Since also u(r) — 0, it follows that
H(p)+ F(u) — 0 as r — oo.

By integration of (2.3) we thus obtain

” b+ ) = [,

s
so that in particular H(p) + F(u) > 0 for all r. Hence
0 < [H(p) + F(u)] < " H(p)

in (rg,00), since F(u) < 0 for u < a. In turn

0<r"H(p) =r"[pQp) — G(p)]

<7r"pQ(p) since G > 0
< (A+1)rp by (3.2),
for r sufficiently large. But
liminf rp = 0.

In fact, otherwise,

p > Const./r for large r,
which is impossible since p € L1[0, 00). Indeed,
0 < u(r)=u(0) +/ u'(s)ds = u(0) — / p(s)ds,
0 0

that is .
/ p(s)ds < u(0) for all r.
0
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Hence (3.3) holds, completing the proof of the lemma.

Note. The above proof is easily seen to hold equally when u has compact support, that
is u(r) > 0 for 0 < r < b and u(r) = v (r) = 0 when r > b. Of course in this case the

limit in (3.2) is necessarily zero, and equally
r"[H(p) + F(u)] =0 for r > b.

Lemma 3.3. Ifto(u) —t1(u) > 0 on an interval I C (0,«), then ta(u) — t1(u) can have
at most one critical point on I. If such a point occurs, it must be a strict mazimum.
Moreover, if I = (0,d), d < a, then th(u) —tj(u) <0 on I.

The first part of this result is just Lemma 3.3.1 of [FLS]. (The conditions (F1), (F2)
in that lemma are used only to guarantee the hypotheses on F'(u) in Lemma 1.2.6, and
hence are not required here — see also Lemma 3.6.3.)

The second part is Lemma 3.6.5 of [FLS].

Lemma 3.4. Let ui(r) and uz(r) be two different ground states for (1.5). Then the

graphs u = uy(r) and u = ug(r) cannot intersect at any point in the set 0 < u < a, r > 0.

This is just Theorem 3.6.7 of [FLS], together with unique continuation (see Proposition
A2 of [FLS] with the modified initial conditions u(a) > 0 and u/(a) < 0).

4. Proof of Theorem 1. Part II.

Let uy,us be two different radial ground states, with u;(0) = a1, u2(0) = az. We
assert that oy # 9. Indeed, if a3 = a9, then as noted at the beginning of Section 3
we must have f(ay) > 0. By Proposition A4 of the Appendix of [FLS], together with
conditions (2) and (b), (c), it then follows that ui(r) = us(r) as long as r < r,, where
ui(rq) = uz(ry) = a. But v/(r) < 0 as long as r > 0, u(r) > 0. Therefore, because
equation (2.1) is singular only when v'(r) = 0, it is clear that the Cauchy problem for
(2.1) at = r, is unique, that is u;(r) = ug(r) for all » > 0. (This is Proposition A2 of
[FLS]). This contradicts the assumption that u; and wug are different, and the assertion
is proved. (An alternative method to prove the assertion appears on page 227 of [FLS].)

For definiteness we now suppose a1 < ao, where of course a; > a. We first show that

the graphs of u;(r) and us(r) intersect at most once in the region r > 0, u > 0.
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By Lemma 3.4 there can be no intersection at any point (R,U) where R > 0,0 < U <
a. We claim on the other hand that there can be at most one intersection (R, U) where
U > a. Suppose in fact that there were two such points, (R;,Us) and (R;7,Uyr). Let Ry
be the first intersection and R;; the second (intersection points must be isolated by the

uniqueness of the Cauchy problem), that is Ry < Ry, Uy > Uy and
u1(Rr) = ua(Rr) = uy, u1(Rrr) = u2(Rir) = ups.
For r between 0 and R; we have u;(r) < us(r), that is
to(u) > t1(u) for wuy <u<a,

where a@ = min(ay,as) = o;. By Lemma 3.3 it follows that ¢o(u) — t1(u) can have at
most one critical point on the interval (uy, ), which (should it occur at all) would have

to be a strict maximum. But
th —t] — oo, as t—a” (= aq)
(since tj; — —oo and t,, — finite limit as © — «~), while clearly
th—t) >0 at t=uy.
Hence necessarily
(4.1) th—t) >0 for u;<u<a.

Between R; and R;; the same argument shows (since t; > to for uy; < u < uy) that

there is exactly one point u = u. between u; and uy; such that t(u.) =t} (u.), and

th—t) >0  for w.<u<us

th—t] <0 for wurr <u < ue.
Combining with (4.1), we have specifically

(4.2) th(u) >t} (u) for wu. <u<a;
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of course u,. > a.

Let C = Ty2(u.). By (b) we have f(u) > 0 for u > u.. Then from (4.2) and Lemma 3.1
we see that T7,(u) < 0 for u. < u < a. Therefore

(4.3) C > Tia(u), U < u < .

Now we apply Proposition 1 (this is the idea of Erbe and Tang) to each of the solutions

u1(r), uz(r). Thus we have

Rlc
P(Ric, e, p1(Ric)) n/ "1 p1Q(p1) L(uy, p1)dr
0

(4.4) 0
P(Rac, tuc, p2(Rac) = n/ " paQ(p2) L(ua, pa)dr,
0
where
(45) Lluwp) = K1)~ P+ 2,
and
p1=p1(r) = [uy(r)l,  p2 = pa(r) = |us(r)]

Ric = t1(ue), Rae = ta(uc).
Then by subtraction, and change of integration variable from r to u, we derive
P(Ric, uc, p1(Ric)) — CP(Rac, e, p2(Rac))
(4.6) - n/:C{Ctg_l%(u)L(%/)2(751)) — 17710 () L(u, p1 (t1)) }du

+nC’/ t27 Qs (u) L(u, pa(t1))du,

where @1 (u) = Q(p1(r(w))), Q2(u) = Qp2(r(u))).
By (4.2) and the fact that p = —1/t/, we obtain pa(ta(u)) > p1(t1(u)) for u. < u < a.

Hence by the main assumption (3)

L(u, p2(ta) > L(u, p1(t1)), U < u < a.
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It follows that
{Ct57 Qo (u) L(u, pa(t2)) — 177 Q1 (u) L(u, p1 (t1))}
(4.7) > {Ct5™ Qo (u) — 177 Q1 (u) }L(u, p(t2)
=ty ' Qo (u){C — Tr2(uw)} L(u, pa(t2)).
Now from (4.5) and (1.6) it is clear that

1 1
4.8 L > K'(u)——+=>0
(4.8) (up) 2 K'(u) = —+ >0,

by the principal hypothesis (2.5). Hence, using (4.3), both integrands on the right hand
side of (4.6) are non-negative; in turn, since u. < o < g the right hand side of (4.6) is

non-positive.

On the other hand, from the definition (2.4),

P(Ric, uc, p1(Ric)) — CP(Rac, e, p2(Rac))
= t1(uc)"” [H(p1(Ric)) + F(uc)] — Cta(ue)™ [H(p2(Ra2c)) + F(uc)]
— n{ty (ue)" 1 (o) — Cta(ue) 1 Qo (ue) VK (ue)
=1+ L.

Using the fact that ¢} (u.) = th(u.), we obtain p1(R1.) = p2(Rae), Q1(ue) = Qao(u.) and
Cta(ue) ™ =ty (ue)" 1,
so I = 0. Similarly
Iy =ty (ue)" ™" - [t (ue) — ta(ue)] - [H(p1(Rue) + F(uc)] > 0

since t1(u.) > ta(u.) and H(p) + F(u) > 0 — see (3.4) and note that the integral is
certainly positive for 0 < r < Ry.. This contradicts the equality in (4.6) and shows that
the two presumed intersection points cannot occur.

If we combine this with what has already been observed, that there are no intersection
points below the line u = a, it follows that the graphs of ui(r) and us(r) can have at
most one intersection point in the region r > 0, u > 0, and that this can occur only when

u > a.
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In fact, there cannot even be a single such intersection. Suppose there were, say at

(R,U). Then we use the second part of Lemma 3.3 to see that
(4.9) t1(u) > to(u), th(u) > t)(u)
for 0 < u < U = u1(R) = uz(R). Since also, as for (4.1) above,
ti(u) <to(u),  ty(u) >t1(u)
for U < u < a, we get
th(u) >t} (u), 0<u<a.
It follows from Lemma 3.1 that

Tiy(u) <0  for a<u<a

Ty5(u) >0 for 0<u<a.

In particular
Tio(u) < Tio(a) = D for 0<u<ea, u#a.

We now use the relation (4.6) again, but replacing C' by D and the interval u. < u < «
by € < u < o, where € > 0 is small. This gives

P(R1575>p1(R15)) - DP(R25,€,[?2(R25)

(4.10) = ”/:{Dtg_lﬁﬂu)ll(ua pa(ta)) — 7710 (u) L(u, p1(t1)) }du

+nD / 100 () L (1, pa (t))du,

where Rls = tl (6), RQE = tg(ﬁ).
In writing (4.10) care must be taken to avoid the singularity of P(r, u, p) at w = a. This

is accomplished by replacing the full interval (¢, ) by the pair of integration intervals
(e,a —9), (a+9,a),

thus effectively isolating the singularity at © = a, and then letting 6 — 0. The additional
terms which thereby arise on the left hand side of (4.10) are then given by (in an obvious

notation)
u=a+9do

[P1(u) = DPy(u)]

u=a—3a
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which we denote by J. From the definition (2.4) of P, it is clear that

u=a+9d
(4.11) }ii% J = n%ii%{DtQ(u)”*lﬁg(u) — 1 (w)" " (u) YK (u)

u=a—9
since all remaining terms in J arise from functions which are continuous at © = a. The
function on the right side of (4.11), when evaluated at u = a — §, can be rewritten
T12(a — 5) — Tlg(a)

fla—10)

[ta(a — 0)]" 'Qa(a — §)F(a — o)

By the mean value theorem and (3.1),

p=p2(R2,a—¢)

1
T12(CL — 5) — le(a) = —Tlg(a — g)pQ—(p) ) . f(a, — 5) - 0.
for some £ € (0,9). Hence
 Tisla—08) —Ti(a) L[t fa—¢)
(4.12) lim a3 = —Tia(a) | - lim a0 6.

Again by the definition of K (u),

fla—¢ _K(a—38) Fla—9
fla=0)  Kla-¢ Fla—o)

But since K'(u) is bounded below by virtue of (2.5), we have

K(a—9) < K(a— &)+ Const. 9.

Clearly F'(a) <0, s0 K(a—0) — oo as d — 0. Thus

K(a—9) <14 Const. 0 <9

"“Fa-o ' TEu-9

for ¢ suitably small. Consequently, since F' is continuous at a,

fla=9c . K(@—0)

The same argument yields as well (since f >0, FF <0, K <0 fora <u <a+4J and o
small) that

(4.14) lim L9F8) 5

S faro)’
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Thus from (4.11)—(4.14) we see without difficulty that

lim J = 0.
6—0

That is, the singularity at u = a is removable and formula (4.10) holds as written,
naturally with the proviso that the first integral on the right side should be considered
as a limit with § — 0 (in fact it is not hard to see that this integral also exists as written,
irrespective of the singularity at u = a).

The integrands on the right side of (4.10) are clearly non-negative, as before. Now
consider the limit of the left hand side as ¢ — 0. Since K’ is bounded below by the real
number (n —m)/nm, and K(u) > 0 for 0 < u < a, we have

(4.15) lim K(u) =& > 0.

u—0

In fact & must be zero. Otherwise we would have

F(u)  F(u)
K(u) = = > K, O<u<a
=) T P
for some constant x > 0. By integration
F
%Sexp(v—u}//{, O<u<wv<a.

Rewriting gives |F'(v)| < |F(u)| exp (v — u)/k, whence letting u — 0 yields |F(v)| = 0,
0 < v < a, which is impossible. Hence (4.15) holds with & = 0.

We now apply Lemma 3.2. To begin with, by (3.2) and (4.15), and using the notation
r=t(u),

(4.16) lim r" 1 Q(p(r)) K (v) = A lim K (u) = 0.

u—0 u—~0

Let (r;); be a sequence with r; — oo such that?

i —00

which exists in view of (3.3). Then putting

SZ'Z'LLQ(TZ‘), i:1,2,...,

4For a compact support solution (see the note after Lemma 3.2) we take r; — b.
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we get with the help of (4.16) and (4.17) — note r; = ta(g;) = Rae, —

iiznsl_iil)g{P(le:WEvpl(Rle)) - DP(R257€7p2(R25))}

(4.18) = liminf RY.[H(p1(Ric)) + F(u1(Ric))] > 0.

e=e;—0

On the other hand, since the integrands on the right hand side of (4.10) are non—negative,
the right hand side of (4.10) clearly approaches a a non-positive limit as ¢ — 0. Conse-
quently, in view of (4.18) the right hand side of (4.10) approaches zero as € — 0, and in
turn the integrands on the right hand side must vanish on (0, &) and (¢, a), respectively.
Hence (see e.g. (4.6)—(4.8))

nm

for 0 < u < a2, u # a. But this is impossible since K (u) = F(u)/f(u) and

lim F(u)/f(u) = oc.

u—a -

We thus conclude that the graphs of the solutions u;(r) and uz(r) do not intersect at

any point in the region r > 0, u > 0, that is
to(u) > t1(u), 0<u<a.
This is itself impossible, however, as noted in both [FLS] and [ET]. Indeed by Lemma 3.3
th(u) —ty(u) <0, 0<u<a.

But this is an absurdity because, as noted earlier, ) (u) — —oc0 as u — a~ while t5(«) is
finite.
This completes the proof of Theorem 1.

5. The canonical case f(u) = —u? +u?, 0<p<gq.
Here (a), (b), (c) are satisfied with @ = 1. We first consider the important case when
I<m<n.

As in Section 4 of Erbe and Tang, one computes that

-5 (555 fov o




UNIQUENESS OF GROUND STATES FOR QUASILINEAR ELLIPTIC OPERATORS 19

(so K — 0 as u — 0 without further argument!) and

n—-m 1 &?—(u+v

K’ - -
() nm o+1 (v—1)2
for v # 1, where
—1
o:(m )n—km7 b — 0P
n—m
and
0—dq g—p
=—, v=—", =&q—p+ D) +v(p—q+1).
L1 D1 (=&lg—p+)+vlp—q+1)

Thus to satisfy (2.5) it is necessary to determine the range of exponents p, ¢ such that
D(x)z{xQ—Cx—f—VZO for x > 0.
Naturally one must require 0 < p < ¢ < 0, a condition which we assume in the sequel
without further mention. Then D(z) > 0 for = > 0 if and only if either
(<0 or (<4
Lemma 1. (? < 4v€ if and only if
I(p,g) =(p+1)(g—p+1)*(0—q) —(g+1)(p—q+1)*(c—p) 2 0.
Proof. By direct calculation
Av = =200(1+ (¢ —p)*) =g —p+1)* =2 (p— g+ 1)?
= (- {la—p)* +1} = 2(a —p)(€ —v?)
= (- v){-€g—p) +1)*+v((p—a) +1)*}
(c+1)(g—p)

R R

Lemma 2. D(z) >0 ifp+1<q.

Proof. We may suppose ¢ > 0 without loss of generality. Then
P+1)(1+q—p)lo—q)+(q+1)(1+p—q)(c—p)>0
and, noting that ¢ —p —1 > 0,
I(p,q) = (p+ 1)1 +q—p)*(c—a) +(g—p-1) (¢+ 1)1 +p—q)(o—p)
>(p+1)(1+q-p*c—q) —(¢—p—1) (p+ D1 +q—p)(o—q)
2(p+1)(0 —¢)(1+¢—p) =0
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Lemma 3. I(p,q) for fized p is a cubic in q with leading term —(o + 1)g>.

I(p,p) =0 and

Moreover

oI
6—q(p,p) = —4p® +4(c — 1)p+ 30 — 1,

I(p,0) = (o +1)(o —p)(o —p—1)*.

Proof. Direct verification.
Lemma 4. Leto > 1. Then I(p,q) >0 whenp<o—1,p<qg<p+1.

Proof. From the first displayed line of Lemma 3 it is easy to see that (0I/0q)(p,p) > 0
for 0 < p < po(o), where

po(a):%{a—l—k\/(0—1)2+30—1}

(thus, e.g., when n = 3, m = 2 we have 0 = 5 and py = 4.739).
Obviously o — 1 < pg < 0. Hence, for p <o — 1,

ol

a—q(p,p) > 0, I(p,p) =0, I(p,p+1)>0.

Therefore, using the fact that I is a cubic in ¢ with leading term —(o + 1)¢3, it follows
easily that

I(p,q) >0, p<g<p+1l

Lemma 5. Suppose 0 —1 < p < pg, 0 > 1. Then there exists qo = qo(p, o) such that
p<qo <o and

I(p,q) >0  for p<q<qo.

Proof. Similar to the previous lemma, except that the relation I(p,p + 1) > 0 must be
replaced by I(p,o) < 0.
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Lemma 6. Suppose1/3 <o <1. Then 0 < py < o. Moreover, there exists ¢1 = q1(p,0)
such that p < q1 < o when 0 < p < pgy and

I(p,q) >0  for 0<p<py, p<qg=<aq.

Proof. This is the same as for Lemma 5, once one notes that py > 0 (rather than py, >

o — 1) because o > 1/3.

Let 0 > 1. Combining Lemmas 1, 2, 4, 5, we see that D(x) > 0 for z > 0 when
p <o —1, and also when 0 — 1 < p < pg(0), p < ¢ < qo(p, o). This completes the proof
of Theorem 2 for the case n > m. Theorem 2’ follows in the same way, using Lemma 6
rather than Lemmas 4, 5.

The case n < m is easist considered by letting o — oo in (2.7), leading to the results

noted immediately after the statement of Theorem 2.

6. Remarks and generalizations

1. Condition (a), that f be continuous in [0,00) and f(0) = 0, can be weakened,
provided some care is exercised concerning the meaning of compact support solutions,
i.e. solutions such that u(r) > 0 for » < b and u(r) = v/(r) = 0 for r > b. In particular,
when f(0) is not zero the function u(r) in these cases can no longer be a solution of (2.1)
when r > b. To avoid this difficulty we define a radial compact support ground state as

a function u(r), such that u(r) is positive and satisfies (2.1) for r < b, has the property
u(r), v'(r) =0 as r1b,

and finally u(r), u/(r) =0 for r > b.

Such compact support ground states exist even when f(0) is not defined (see [KK]
when f(0) exists but is negative rather than zero); moreover one finds exactly as in
[FLS], Lemma 1.2-6 (i), that they retain the property u'(r) < 0 for 0 < r < b. The
preceding uniqueness proof then continues to hold if we replace condition (a) by the

weaker hypothesis
(a’) f is locally integrable on [0, 00).
In particular, the integral F'(u) = [, f(7)d7 then exists, and F(u) — 0 as u — 0 (note

that this applies even if f(u) — —oo as u — 0).
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For the model nonlinearity
(1.2) fu) = —uf +u?

we can thus allow —1 < p < ¢q. (The case p < —1 is ruled out, since then f is not
locally integrable on [0,00)). The uniqueness condition (2.5) for the nonlinearity (1.2)
has already been explored in Section 4 when p > 0. For the range -1 <p <0,0>1a
similar argument applies, and in particular (2.5) holds when 0 < g < 0. To demonstrate

this, it is enough to verify that
I(p,0) >0 for —1<p<0, 0>1/3,
Ip,p+1)>0 for —1<p<0, 0>1,

and to use the cubic property of I(p, q) together with I(p,p) = 0..

We summarize the above results in the following two theorems.

Theorem 3. Let conditions (a’), (b), (c) hold. Then equation (1.5) admits at most one
radial ground state when (2.5) is satisfied.

Theorem 4. Suppose —1 <p <0,0<gq <o, 0 >1. Then there cannot be more than

one radial ground state of equation (1.5) for the nonlinearity (1.2).

Observe from the Corollary in Section 1..3 of [FLS] that any ground state in the case
of Theorem 4 in fact has compact support (since p+ 1 < m).

Finally, there is a corresponding result to Theorem 2’, which we state without proof.

Theorem 4'. Let 1/3 < o < 1. Then (1.1) admits at most one ground state for the
nonlinearity (1.2) when

i) —-1l<p<o-1, 0<g<o

(i) o—1<p<O0, 0<qg<q.

2. Condition (b) can also be weakened to the requirement that f(u) be locally Lipschitz
continuous on (0, 00). In this case condition (2.5) must be interpreted as holding almost

everywhere, or alternatively (as one easily sees) that the function

K (u) -
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is non-decreasing on (0,a) and on (a,c0). The proofs remain identical, since by Propo-
sition 1 the function P is still absolutely continuous when u # a (rather than being
continuously differentiable), which leaves the integral formulas (4.6) and (4.10), and so

the proof itself, unchanged.

3. The equation

(6.1) Apu+rif(u) =0 in R",
where
—1
(6.2) m > 1, l—i—mmin{l, r }>0,
m—1

can be treated by the same approach.

Because of the singular term 7! in (6.1), it is however first necessary to give an appro-
priate definition of a "regular” solution of (6.1). That is, we consider non-negative radial
distribution solutions of class C1(R™ \ {0}) which are bounded near x = 0, and with a

further technical assumption if n < m, namely
(6.3) Du(zx) = o <7‘_(”_1)/(m_1)> as x — 0.
We shall also need the following

Lemma. Letu = u(r) be a reqular radial solution of (6.1), with liminf, .o u(r) = a > 0.
Then

(6.4) u'(r) =0 (T(Hl)/(mil)) and u(r) —a =0 (7‘(’+m)/(m71)>

asr — 0, where [ +m >0 by (6.2).

Proof. We proceed as in Lemma 1.1.1 of [FLS]. Thus, letting w(r) = |u/(r)|™ 24/ (r),
r > 0, it follows from (6.1) that

['r"_lw(r)} = —r!T L f (u(r)), r > 0.

By integration over [s,7], 0 < s < r, there results

(6.5) " lw(r) — s tw(s) = — /T =L f(u(t))dt.

S
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Clearly [ +n > 0 by (6.2), so that #*"~1f(u(-)) € L0, 6] for some § > 0. Then (6.5)
shows that s !w(s) tends to a finite limit v as s — 0.

We assert that v = 0. This is obvious from (6.3) if n < m. Suppose n > m and, for
contradiction, v # 0. Then clearly «/(r) = sign y|yr|~ = D/(m=D[1 +0o(1)] as r — 0. But
pm(n=1)/(m=1) o L]0, 1], so in turn u cannot be bounded near r = 0. This is impossible,
and the claim is shown.

Again letting s — 0 in (6.5) we get

" lw(r) = — /Or tl+”_1f(u(t))dt,

which implies
u'(r) =0 <T‘(l+1)/(m_1)> as r — 0.

A further integration then gives u(r) — a = O(rU+™/(m=1) " completing the proof of
(6.4).

Now, with the change of variable

m
_ " (4+m)/m

4 I+ mr
it is not hard to see that regular radial solutions of (6.1) satisfy the ordinary differential
equation

N -1

(6.6) (Ju' ") + =" 720 + f(u) =0,  y >0,

Y

where primes now denote differentiation with respect to y, and

l+n
l+m

N=m

(the restriction (6.2) on [ implies that [ +m > 0 and N > 1). Moreover, by (6.4) one
finds

' (y) = r-YmO <T<l+1>/(m—1>> —0 <yl/(m—1>> . uly)—a=0 <ym/(m—1>>

as y — 0. That is, if u = u(r) is a regular radial ground state of (6.1) then u = u(y) is

radial distribution solution of (6.6) of class C1(R™), satisfying the ground state conditions

u(y) 20, w#0, uly) — 0 asy—0.
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Since
N —m n n—m

Nm :l—I—n' nm

the uniqueness criterion (2.5) takes the form

d F(u) n  n—m

> :
du f(u) —l+n nm

That is, under this condition, reqular radial ground states of (6.1) are unique — translations
of the origin not being allowed since O is already fixed in (6.1).
Note that when n > m the natural Sobolev exponent for (6.1) and (6.6) is
m—1)N+m (m—-1n+({+1)m

g = =
N —m n—m ’

cf. (1.4).

7. The exterior Neumann problem.

Consider non-negative radial solutions of (1.5) in the exterior of the ball By of radius

Ry, subject to the boundary conditions

@:O on 0By, u(r) — 0 asr — oo.

on

The required equation is then (2.1), with the conditions
u' (Rp) =0, u(r) — 0 asr — oo.

The uniqueness question for this problem can be treated essentially as before, and all the
previous results continue to hold.

In particular, to prove the analogue of Theorem 1, we assume for contradiction that
there are two different solutions u; = wui(r), ugs = ua(r) for Ry < r < co. We may
suppose

Ul(Ro) = o, UQ(R()) = (o, with a < a1 < as.

The preceding arguments then carry over essentially unchanged, except for the proof that

solutions cannot intersect above the line u = a.
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More specifically, for the present case the relations (4.4) must be replaced by

Rlc
P(Rucstespr(Ri0) = BiF(a) =n [ 17401 2(p1) L, 1)
R
1(;20
P(Rac, te, p2(Rac)) — RGF(a2) = n/ r"flpgﬁ(pg)L(UQ,pg)dr.
Ry

Multiplying the second of these equations by C, as previously, and subtracting from the
first now yields the relation (4.6), modified however by the inclusion of the additional
term

S =R{[CF(ag) — F(ay)]

on the left hand side.
We show that S > 0. To see this, note first that C = [t;(u)/t2(u)]"! > 1, and that
(since ag > a1 > a)
Qs

F(az) — F(aq) = (1)dr > 0.

o

It is therefore enough to have F'(az) > 0. This however follows from [FLS], Lemma 1.2.1
— which for its derivation relies only on the fact that p = 0 at » = 0, or in the present
case, that p = 0 when r = Ry.

Having shown that S > 0, the argument proving that there cannot be two intersections
above the line © = a now carries over word for word.

Continuing with the modified proof, one finds next that the relation (4.10) is changed
by the addition of the term

S" = R[DF(a2) — F(o)]

on the left hand side.
We show that S’ > 0, this now requiring only that D > 1, as in the previous argument.

To obtain this, first note from Lemma 3.2 that

" Qp1) = M —/ "1 f (uq)dr,

10(p) = Mg — / P () dr,
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where A1, Ay > 0 are the limits in (3.2), respectively for the solutions u; = wui(r) and

ugy = uz(r). Changing variables from r to u(r) in these relations, and subtracting, gives
Uty (w)]r ! to(u)]? 1

(0" 0a(0) = o] 0alu) = 3~ 2o = [ { P - R

0

p1(u) pa(u)

in an obvious notation.
By (4.9) the expression in braces in the integrand is positive when 0 < u < U, while

f(u) <0 for 0 < u < a. Hence for 0 < u < a we get
[t1 ()]~ () = [t2(w)]" 7 Q2 (u) > A1 — Ao

(recall that U > a). Also, by [FLS], Lemma 3.6.2, one obtains Ay < \; since ug(r) < uy(r)

for all sufficiently large r. Consequently
[t1(a)]" " Q1 (a) — [t2(a)]" ' Q2(a) > 0,

which is exactly the condition D > 1.

Hence S’ > 0, and the argument showing that there can be no intersections above the
line u = a carries over essentially unchanged.

Since no further modifications are required, Theorem 1 thus holds for the exterior
Neumann problem, as well as for the ground state problem. The remaining theorems of
the paper, dealing with the validity of condition (2.5) for the canonical nonlinearity (1.2),
are of course unchanged, whether one is concerned with the ground state problem or the

exterior Neumann problem.
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